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Highlights 

 Interval rough number is introduced to deal with the vagueness in decision-making 

 A novel DEMATEL-ANP model based oninterval rough numbers 

 Application of a new multi-criteria technique called MARICA 

 An interval rough number based on MARICA is proposed to evaluate the alternatives 

 Multi-criteria techniques were compared based on interval rough and fuzzy approaches. 
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Abstract 

This paper presents a novel approach for treating uncertainty in the multi-criteria decision making process by 

introducing interval rough numbers (IRN). The IRN approach enables decision making using only the internal 

knowledge incorporated in the data provided by the decision maker. A hybrid multi-criteria model was developed 

based on IRN, and demonstrated using the example of the bidder selection process in the state administration 

public procurement procedure. The first segment of the hybrid model deals with the rough interval DEMATEL-

ANP (IR'DANP) model, which enables more objective expert evaluation of criteria in a subjective environment 

than the traditional/crisp approach. In the second segment, the evaluation is enabled by applying the new rough 

interval MAIRCA method, which introduces mathematical tools and shows high stability concerning changes in 

the nature and characteristics of the criteria. The results of the hybrid IR'DANP-MAIRCA model were analyzed 

using 36 scenarios of sensitivity analysis, which showed high stability of the results. The results of the interval 

rough method were compared with the fuzzy extensions of the TOPSIS, VIKOR, MABAC, TODIM, ELECTRE 

I and DEMATEL-ANP models. 

Key words: interval rough numbers; DEMATEL; ANP; MAIRCA; public procurements. 

 

1. Introduction 

The process of selecting alternatives in an MCDM problem assumes that the psychology and behavior of the 

decision makers (DM) will be completely rational (Fan et al., 2013). However, in reality, experts with different 

backgrounds and levels of knowledge use linguistic terms to represent their evaluation and also their preferences 

while solving qualitative group decision-making problems (Xu and Wang, 2016). In general, data and 

information found in the judgment of the experts are subjective as well as inherently non-numeric, and this gives 

rise to uncertainty and impreciseness with non-probabilistic characteristics (Martinez et al., 2007). Hence, various 

approaches can be used to enable more realistic presentation of the decision attribute values: interval numbers 

(Zeshui and Qingli, 2003; Shuping, 2009), fuzzy sets (Zadeh, 1965; Pamuĉar and Ćirović, 2015), rough numbers 

(Song et al., 2014; Zhu et al., 2015), grey theory (Kuang et al., 2015; Arce et al., 2015), Z numbers (Kang et al., 

2012; Azadeh and Kokabi, 2016), and others. These approaches are most appropriate for presenting uncertainties 

related to describing qualitative criteria using linguistic scales, defining indicators for qualitative criteria, and for 

the reliability of expert evaluations. The basic idea of applying algorithms in the decision making process 

supported by the interval approach (interval numbers, grey theory and so on) implies that interval numbers will 

be used for presenting the attribute values. However, it is very difficult to define the limits of the interval 

numbers since they are all based on experience, intuition and the subjective perception of the decision maker. 

To deal with uncertainties and to determine the values of qualitative attributes, the majority of authors use fuzzy 

sets (Zadeh, 1965) or various extensions of fuzzy theory such as: interval-valued fuzzy sets (Vahdani et al., 2013; 

Sizong and Tao, 2016; Zywica, 2016), intuitionistic fuzzy sets (Atanassov, 1986; Ngan, 2017), interval 

intuitionistic fuzzy sets (Nayagama, 2016; Nguyen, 2016), hesistant fuzzy sets (Wang et al., 2015; Ngan, 2017), 
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and the like. Fuzzy sets are a very powerful and commonly used tool for dealing with imprecision. However, 

subjectivity when selecting an appropriate membership function for fuzzy sets can affect the final decision and so 

particular care needs to be paid to it (Qazi et al., 2016; Wang et al., 2016).  

In addition to fuzzy theory, rough set theory, originally introduced by Pawlak (1982), is another suitable tool for 

treating imprecision. In recent years, rough set theory has been successfully implemented in various fields of 

human activities. It can be said that its application is adequate and usually irreplaceable when handling 

uncertainty and inaccuracy analyses. Knowing the advantages of rough set theory (Pawlak 1991), the application 

of rough sets is fully justified in today’s modern practice in the decision-making process when it includes 

imprecision in the data.  

The purpose of the fuzzy tehnique in the decision making process is to enable the transformation of crisp 

numbers into fuzzy numbers that show uncertainties in real world systems using the membership function. As 

opposed to fuzzy sets theory that requires a subjective approach in determining partial functions and fuzzy set 

boundaries, rough set theory determines set boundaries based on real values and depends on the degree of 

certainty of the decision maker. Since rough set theory deals solely with internal knowledge, i.e. operational data, 

there is no need to rely on assumption models. In other words, when applying rough sets, only the structure of the 

given data is used instead of various additional/external parameters (Yang et al., 2016). Duntsch and Gediga 

(1997) believe that the logic of rough set theory is based solely on data that speak for themselves. When dealing 

with rough sets, the measurement of uncertainty is based on the vagueness already contained in the data (Xu et 

al., 2016b). In this way, the objective indicators contained in the data can be determined. In addition, rough set 

theory is suitable for application on sets characterized by irrelevant data where use of statistical methods does not 

seem appropriate (Pawlak 1991, 1993; Zhang et al., 2016).  

 

2. Literature revew 

From its beginnings until today, rough set theory has evolved by solving numerous soft computing problems 

(Khoo and Zhai, 2001; Li et al., 2009; Zhai et al., 2010; Nauman et al., 2016; Liang et al., 2017), as well as 

applying rough numbers in a QFD matrix (Zhai et al., 2008), evaluating the requirements of industrial product 

service system users by applying rough numbers (Song et al., 2013a), design concept evaluation (Zhu et al., 

2015), product design evaluation (Tiwari et al., 2016; Hesam et al., 2016) and so on. Since this paper deals with 

the application of interval rough numbers in the multi-criteria decision making process, studies referring to the 

modification of multi-criteria decision making (MCDM) models by applying rough numbers and their extensions 

are presented below. Special attention is given to literature that deals with the bidder selection process in the 

public procurement procedure since this is the case study used to demonstrate the interval rough MCDM model. 

Some papers deal with the application of rough numbers in multi-criteria models that utilize the rough AHP 

method either on its own (Sugihara et al., 1999; Xie et al., 2008; Li et al., 2009; Kang et al., 2016) or as a hybrid 

model in combination with other multi-criteria techniques: AHP-TOPSIS (Aydogan, 2011; Song, 2014), AHP-

VIKOR (Guo and Zhang, 2008; Ağirgün, 2012; Zhu et al., 2015) and AHP-MABAC (Roy et al., 2016). 

However, only a few studies deal with the application of rough sets (Pawlak 1991, 1993) and rough numbers 

(Hesam et al., 2016) in the MCDM process even though they show considerable advantages. The authors have 

also found very few papers dealing with the application of interval rough numbers in MCDM. Wang et al. (2011) 

applied interval rough numbers to deal with imprecision when determining the weight coefficients of decision 

attributes by introducing an interval rough operator for IRN aggregation. IRN was also applied to develop a 

hybrid QFD model (Zheng et al., 2016).  

On the other hand, analysis of the literature that deals with the application of MCDM in the public procurement 

procedure (Table 1) has shown that the crisp and fuzzy approaches are the most frequently applied MCDM 

techniques. 

Table 1. Application of MCDM techniques in the bidder evaluation process -public procurement procedure 
Technique Fuzzy (literature) Traditional-crisp (literature) 

AHP/ANP 

Kahraman  et al. (2003); Dobi  et al. 

(2010); Amid, Ghodsypour, and 

O’Brien (2011); Labib (2011); 

Costantino et al. (2011); Han and 

Wang, (2016); Nazari  et al. (2016); 

Sameh  et al. (2016) 

Topcu (2004); Levary (2008); 

Bhattacharya et al. (2010); Sipahi and 

Esen (2010); Chan and Chan (2010); 

Ho et al. (2011); Mafakheri et al. 

(2011); Ishizaka et al. (2012); Yu et al. 

(2012); Veselinović  (2014); ); Chua et 

al., (2015); Mimović and Krstić (2016) 

TOPSIS Crispim and De Sousa (2010); Zhao Adil et al. (2014); Ekbatania and Cats 
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Technique Fuzzy (literature) Traditional-crisp (literature) 

and Guo (2014); Bobar et al. (2015); 

Liu et al., (2016) 

(2015) 

ELECTRE I  
Vahdani et al. (2010); Liu and Zhang 

(2011); Zak (2015) 

Hybrid model ANP-TOPSIS Kuo et al. (2015) 
Lin et al. (2011); Buyukozkan and 

Cifci (2012) 

The best worst method Rezaei et al. (2016)  

Max–min method Sen et al. (2010)  

DEA (Data Envelopment Analysis) Ji et al., 2016 Falagario et al. (2012) 

Based on the literature survey (Table 1), it can be noticed that authors have given much attention to both the 

development and application of various multi-criteria techniques in public procurements. It is worth mentioning 

that public procurements are considered to be an important segment of the market, having in mind that the cost of 

public procurements in the European Union amounts to nearly 19% of the GDP (European Commission, 2012), 

and 15% of the global GDP (Bajari and Lewis, 2011). Hence, there is a need to take full control over the public 

procurement procedure when it comes to legality and spending the available funds for designated purposes. 

Multi-criteria techniques are considered to be one of the tools that can provide objectivity, efficiency and 

regularity in the public procurement process.  

The literature survey shows that traditional multi-criteria techniques and their fuzzy extensions are most 

commonly used. Therefore, using other approaches such as IRN and comparing it with both the traditional and 

fuzzy approaches is a logical step towards upgrading the methodology required for evaluating bidders in public 

procurement procedures. In addition, by analyzing the data from Table 1, we can see that the most commonly 

applied multi-criteria techniques are AHP/ANP, TOPSIS and ELECTRE I, as well as hybrid models formed by 

combining them. Therefore, this paper compares the proposed MCDM model with the crisp and fuzzy 

approaches of these multi-criteria techniques. 

The DEMATEL (Decision-Making Trial and Evaluation Laboratory) method (Gabus and Fontela, 1976), 

developed in the Geneva Research Centre of the Battelle Memorial Institute, is one of the methods that can be 

used to model causal dependencies among criteria. The DEMATEL method is able to visualize the complex 

cause and effect relationships in an understandable manner (Büyüközkan & Çifçi, 2012). Dalalah et al. (2011) 

used the DEMATEL method for estimating the criteria weights for the supplier selection problem, Chou et al. 

(2012) combined fuzzy DEMATEL and fuzzy AHP to analyze human resources evaluation criteria, Lin and Wu 

(2008) applied fuzzy DEMATEL to the R&D project selection problem. Tseng (2009) developed a grey-fuzzy 

DEMATEL method for the real estate quality agent ranking problem. Lin (2013) evaluated green supply chain 

practices using the fuzzy DEMATEL method. In addition to the above-mentioned applications of the DEMATEL 

method, the literature also deals with numerous modifications that use spatial fuzzy models (Pamuĉar and 

Ćirović, 2015; Jin et al., 2016; Gigović et al., 2017), D number theory (Zhou et al., 2017), and grey theory (Su et 

al., 2016; Zhong and Chen, 2016; Liang et al., 2016; Shao et al., 2016). Based on the literature survey and the 

knowledge of the authors, no modification of the DEMATEL method applying interval rough numbers (IR-

DEMATEL) has been analyzed in the literature so far.  

Numerous examples of DEMATEL-ANP models for determining weight coefficients have been analyzed by 

various authors (Yang et al., 2013; Gong et al., 2016; Govindan et al., 2014; Kuo et al., 2015; Pourahmad et al., 

2015; Shen and Tzeng, 2016; Gigovic et al., 2017). However, only Buyukozkan and Cifci (2012) have analyzed 

the application of the crisp DEMATEL-ANP model in the public procurement process. In addition, since a 

DEMATEL-ANP model based on interval and/or standard rough numbers has not been developed yet, this paper 

describes an original approach. The IR'DANP model integrates a new method within the MCDM - MAIRCA 

method (Pamuĉar et al., 2014) which was adjusted for application in the interval rough environment. The 

MAIRCA method is a simple mathematical tool with a high degree of stability related to changes in both the 

nature and character of the criteria (Gigovic et al., 2016). According to our knowledge, neither the public 

procurement process nor MCDM recognize a hybrid model able to analyze interdependence among the criteria, 

evaluate alternative solutions or treat imprecision by applying interval rough numbers. 

This paper has several objectives. The first is to upgrade the methodology for treating uncertainty in the group 

multi-criteria decision making process. The second objective is to affirm the IRN idea through detailed 

presentation of the arithmetic operations typical for MCDM using IRN. The third objective is to encourage other 

authors to start with the widespread application of IRN in MCDM, since the advantages of IRN, as presented in 

this paper, offer reasonable motive for widespread application. And finally, the fourth objective of this paper is to 
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bridge the gap identified in the methodology for the bidder evaluation process in the public procurement 

procedure by applying a novel approach to treating uncertainties based on IRN.  

One of the contributions developed in this paper is the introduction of the IR'DANP-MAIRCA model that 

provides more objective expert evaluation of criteria in a subjective environment. Another significant 

contribution is the introduction of the novel IR-DEMATEL, IR-ANP and IR-MAIRCA models developed by 

various authors for the purpose of upgrading MCDM techniques. These models enable the evaluation of 

alternative solutions despite dilemmas in the decision making process and lack of quantitative information.  

The remainder of this paper is structured as follows: Section 3 gives a brief idea of interval rough numbers using 

mathematical equations. Section 4 proposes an algorithm for the hybrid IRD'ANP-MAIRCA model which is 

demonstrated using the real example of bidder evaluation in the public procurement procedure as described in 

Section 5. Section 6 presents a discussion of the IRD'ANP-MAIRCA model results. The discussion of the results 

is presented by means of a sensitivity analysis and comparison of the results with fuzzy and rough extensions of 

the TOPSIS, ELECTRE I, MABAC and VIKOR methods. Finally, Section 7 presents the conclusions, 

highlighting directions for further research. 

 

3. Interval rough numbers 

Assume that U is the universe containing all the objects registered in an information table. Assume that there is a 

set of k  classes representing the DM preferences 
1 2( , ,..., )kR J J J  provided that they belong to a row which 

satisfies the condition 
1 2 ... kJ J J    

and another set of k classes that also represent the DM preferences
*

1 2( , ,..., )kR I I I . Assume that all objects are defined in a universe and related to the DM preferences. In *R  

every class of objects is represented by interval  ,i li uiI I I , provided that 
li uiI I  (1 i m  ), and ,li uiI I R  are 

satisfied. Then, 
liI denotes the lower interval limit, while 

uiI  
denotes the upper interval limit of i  class. If both 

class limits (lower and upper limits) are presented so that 
* * * * * *

1 2 1 2,..., , ,...,l l lj u u ukI I I I I I       (1 ,j k m  ) are 

satisfied respectively, then two new sets containing the lower class 
* * * *

1 2( , ,..., )l l l ljR I I I
 

and upper class 
* * * *

1 2( , ,..., )u u u ukR I I I  
can be defined respectively. If such is the case, then for any class *

liI R  (1 i j  ) and *

uiI R  

(1 i k  ) the lower approximation of *

liI  and *

uiI  can be defined as follows (Wang et al., 2011): 

 * * *( ) / ( )li l liApr I Y U R Y I     (1) 

 * * *( ) / ( )ui u uiApr I Y U R Y I     (2) 

The above-mentioned approximations of *

liI  and *

uiI  
are defined by applying the following equation 

 * * *( ) / ( )li l liApr I Y U R Y I     (3) 

 * * *( ) / ( )ui u uiApr I Y U R Y I     (4) 

Both object classes (upper and lower classes *

liI  
and *

uiI ) are defined by their lower limits *( )liLim I  
and *( )uiLim I  

and upper limits 
*( )liLim I

 
and 

*( )uiLim I , respectively 

* * *1
( ) ( ) ( )li l li

L

Lim I R Y Y Apr I
M

    (5) 

* * *

*

1
( ) ( ) ( )ui u ui

L

Lim I R Y Y Apr I
M

    (6) 

where LM
 
and *

LM  
denote the number of objects contained in lower approximations *

liI  
and *

uiI , respectively. 

The upper limits 
*( )liLim I

 
and 

*( )uiLim I
 
are defined by equations (7) and (8) 

* * *1
( ) ( ) ( )li l li

U

Lim I R Y Y Apr I
M

    (7) 

* * *

*

1
( ) ( ) ( )ui u ui

U

Lim I R Y Y Apr I
M

    (8) 

where UM
 
and *

UM  
denote the number of objects contained in upper approximations *

liI  
and *

uiI , respectively. 

For the lower class of objects, the rough boundary interval from *

liI  
is represented as *( )liRB I  

and denotes the 

interval between the lower and upper limits: 
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* * *( ) ( ) ( )li li liRB I Lim I Lim I    (9) 

While for the upper object class, the rough boundary interval *

uiI  is obtained based on the following equation 

* * *( ) ( ) ( )ui ui uiRB I Lim I Lim I    (10) 

Then the uncertain class of objects *

liI  
and *

uiI  
can be expressed using their lower and upper limits 

* * *( ) ( ), ( )li li liRN I Lim I Lim I 
 

  (11) 

* * *( ) ( ), ( )ui ui uiRN I Lim I Lim I 
 

  (12) 

It can be seen that every class of objects is defined by its lower and upper limits which create an interval rough 

number that can be defined as: 
* * *( ) ( ), ( )i li uiIRN I RN I RN I      (13) 

The procedure for defining IRN will be explained while determining the weight coefficient of criterion wi. The 

criteria were evaluated by four experts. These experts evaluated the criteria using a scale ranging from 1 to 5: 1-

very low, 2-low, 3-moderate, 4-high, and 5-very high. The expert evaluations are shown in Table 2. 

Table 2. Expert evaluations of criterion
iw  

Criterion 
Experts 

E1 E2 E3 E4 

wi (2;3) (3;4) (4;5) (5;5) 

The expert evaluations given in Table 2 are shown in the form of ordered pairs (ai;bi), where ai and bi denote 

values assigned to the criteria based on a 1-5 scale. If an expert cannot decide on only one value from this scale 

then both values are considered (E1, E2 and E3). The above-mentioned example shows that only expert E4 has 

no dilemma since he decided on a unique value from the scale.  

These uncertainties can be represented by trapezoidal fuzzy numbers in the form A=(a1, a2, a3, a4), where a2 and 

a3 denote values in which the membership function can reach its maximum value, while a1 and a4 denote the left 

and right boundaries of the fuzzy set, respectively. In the above-mentioned example (Table 2) we obtain four 

trapezoidal fuzzy numbers A(E1)=(1,2,3,4), A(E2)=(2,3,4,5), A(E3)=(3,4,5,5) and A(E4)=(4,5,5,5). A graphic 

presentation of the trapezoidal fuzzy numbers is shown in Figure 1, where the darker shade denotes values in 

which the membership function can reach its maximum value (a2 and a3), while the lighter shade denotes 

elements of the set that more or less belong to fuzzy set (a1 and a4). 

1

2

3

4

5

3.5

4.5

2.5

1.5

Trapezoidal fuzzy numbers Interval rough  numbers

4.25

a1

a2

a3

a4

a2

a3

a4

a1

a1

a2

a3=a4

a1

a2=a3=a4

*( )liLim I

*( )liLim I

*( )liLim I

*( )liLim I

*( )uiLim I

*( )uiLim I

*( )uiLim I *( )uiLim I

 
Figure 1. Evaluation of criteria – an interval rough and fuzzy evaluation 

In addition to the fuzzy approach, these imprecisions can also be represented by interval rough numbers. Since in 

the above-mentioned equations (1) through (12) an IRN is composed of two rough sequences, the following two 

classes of objects wi and w
'
i can be defined:  2;3;4;5iw 

 
and  ' 3;4;5;5iw  . By applying equations (1) through 

(8), rough sequences (11) and (12) can be established for every object class. For the first object class, we obtain: 

(2) 2Lim  , 
1

(2) (2 3 4 5) 3.5
4

Lim      ; (2) [2,3.5]RN   
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1
(3) (2 3) 2.5

2
Lim    , 

1
(3) (3 4 5) 4

3
Lim     ; (3) [2.5,4]RN   

1
(4) (2 3 4) 3

3
Lim     , 

1
(4) (4 5) 4.5

2
Lim    ; (4) [3,4.5]RN   

1
(5) (2 3 4 5) 3.5

4
Lim      , (5) 5Lim  ; (5) [3.5,5]RN   

For the second object class we obtain: 

(3) 3Lim  , 
1

(3) (3 4 5 5) 4.25
4

Lim      ; (3) [3,4.25]RN   

1
(4) (3 4) 3.5

2
Lim    , 

1
(4) (4 5 5) 4.67

3
Lim     ; (4) [3.5,4.67]RN   

1
(5) (3 4 5 5) 4.25

4
Lim      , (5) 5Lim  ; (5) [4.25,5]RN   

Based on the rough sequences, the following interval rough numbers are obtained:     ( 1) 2,3.5 , 3,4.25IRN E  , 

    ( 2) 2.5,4 , 3.5,4.67IRN E  ,     ( 3) 3,4.5 , 4.25,5IRN E 
 
and     ( 4) 3.5,5 , 4.25,5IRN E  . 

Based on rational judgment without introducing rough and fuzzy sets, it can be concluded that values of criterion 

wi should range between 3.5 and 4.25. These values are obtained based on the geometric mean of classes 

 2;3;4;5iw 
 
and  ' 3;4;5;5iw  . The rational (expected) values 3.5 and 4.25 are represented by a broken line, 

Figure 1. It can be seen that the expected values (3.5 and 4.25) are completely noticeable within all IRN, as 

shown in Figure 1. On the other hand, the fuzzy numbers only partially include the expected values. Therefore 

the membership function of fuzzy numbers A(E2) and A(E3) partially includes the expected values, while fuzzy 

numbers A(E1) and A(E4) include the value of 0.5. On the other hand, all IRNs completely include the expected 

values (3.5 and 4.25).  

The interval rough numbers are characterized by specific arithmetic operations that differ from those dealing with 

typical rough numbers. The arithmetic operations between two interval rough numbers     1 2 3 4( ) , , ,IRN A a a a a

and     1 2 3 4( ) , , ,IRN B b b b b
 
are carried out using the following expressions (14), (15), (16), (17) and (18) 

(Wang et al., 2011): 

(1) Addition of interval rough numbers"+" 

              1 2 3 4 1 2 3 4 1 1 2 2 3 3 4 4( ) ( ) , , , , , , , , ,IRN A IRN B a a a a b b b b a b a b a b a b         (14) 

(2) Substraction of interval rough numbers"-" 

              1 2 3 4 1 2 3 4 1 4 2 3 3 2 4 1( ) ( ) , , , , , , , , ,IRN A IRN B a a a a b b b b a b a b a b a b         (15) 

(3) Multiplication of interval rough numbers"×" 

              1 2 3 4 1 2 3 4 1 1 2 2 3 3 4 4( ) ( ) , , , , , , , , ,IRN A IRN B a a a a b b b b a b a b a b a b         (16) 

(4) Division of interval rough numbers"/" 

              1 2 3 4 1 2 3 4 1 4 2 3 3 2 4 1( ) / ( ) , , , / , , , / , / , / , /IRN A IRN B a a a a b b b b a b a b a b a b   (17) 

(5) Scalar multiplication of interval rough numbers, where 0k   

         1 2 3 4 1 2 3 4( ) , , , , , ,k IRN A k a a a a k a k a k a k a         (18) 

Based on the rules for comparing standard rough numbers (Zhai et al., 2008), the authors of this paper determined 

rules for ranking IRN. Any two interval rough numbers  ' '( ) , , ,L U L UIRN              and

 ' '( ) , , ,L U L UIRN              
are ranked by applying the following rules: 

(1) If an interval rough number is not strictly bounded by another interval, then: 

(a) If condition { ' 'U U  and L L  } or { ' 'U U  and L L  } is satisfied, then ( ) ( )IRN IRN  , 

Figure 2a. 

(b) If condition { ' 'U U  and L L  } is satisfied, then ( ) ( )IRN IRN  , Figure 2b. 
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(2) If interval rough numbers ( )IRN   
and ( )IRN   

are strictly bounded, then the intersection points ( )I   
and 

( )I  of interval rough numbers ( )IRN   
and ( )IRN   

are determined. If condition ' 'U U   
and L L   

is 

satisfied, then 

(a) If condition ( ) ( )I I   
is satisfied, then ( ) ( )IRN IRN  , Figures 2c and 2d. 

(b) If condition ( ) ( )I I  is satisfied, then ( ) ( )IRN IRN  , Figure 2e. 

( ) ( )IRN IRN  ( ) ( )IRN IRN 

'U

L

( )I 

( )I 

( ) ( )IRN IRN ( ) ( )IRN IRN  ( ) ( )IRN IRN 

L

'U

a) b) c) d) e)

( )I 

( )I 

( )I 

( )I 

L

L
L

L

L

L

L

L

'U
'U

'U

'U
'U

'U

'U

'U

 
Figure 2. Ranking interval rough numbers 

Intersection points of the interval rough numbers will be obtained as follows: 

' '( )
;   ( ) ;   ( )

( ) ( )

U L U Lui

ui li

ui li

RB
RB RB

RB RB



      

 
    


 (19) 

' '( )
;   ( ) ;   ( )

( ) ( )

U L U Lui

ui li

ui li

RB
RB RB

RB RB



      

 
    


 (20) 

'( ) (1 )L UI             (21) 
'( ) (1 )L UI             (22) 

Similar rules can be applied provided that ' 'U U   
and L L  . 

 

4. Hybrid IRD'ANP-MAIRCA model 

This paper presents a novel approach to the application of interval rough numbers in the group decision making 

process by introducing the hybrid IR D'ANP-MAIRCA model, Figure 3.  
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Figure 3. Framework of the proposed model 
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Interval rough numbers are used to deal with uncertainty in the group decision making process. Phase 1 includes 

the expert evaluation of criteria by applying the IR DEMATEL model, which results in the creation of input data 

required for the IR ANP model. The output data from the IR DEMATEL model are further processed using the 

algorithm for the IR ANP model. The output data from the IR D'ANP model are used to obtain the interval rough 

weight coefficients of the criteria. The hybrid IR D'ANP model, which is the subject-matter of this paper, 

represents a novel approach for dealing with uncertainty based on IRNs. For defining the final rank of 

alternatives, the IR MAIRCA method is used. This method was developed in the Research Centre of the Logistics 

Department, University of Defense in Belgrade (Pamuĉar et al., 2014). The following three sections deal with the 

algorithms for the IR D'ANP-MAIRCA model. 

 

4.1. The IR-DEMATEL method  

The DEMATEL method is a comprehensive method used in both the design and analysis of structural method 

characterized by the causal relations between complex factors (Gabus and Fontela, 1976). The results obtained 

from this method are the total direct and indirect effects of each factor on the other factors and vice versa. The 

DEMATEL method is used to identify the dependent factors and degree of dependence between them. The 

method is based on graph theory, which enables visual planning and problem solving so that all relevant factors 

can be classified into causal and consequential factors, for better understanding of their interrelations. This 

method makes it possible to better understand the complex structure of a problem and define the relations 

between factors, as well as the relations between the level of the structure and strength of influence of a factor 

(Gigović et al., 2017). 

For the purpose of accepting the subjectivity in the collective decision making process, this paper modifies the 

DEMATEL method by applying interval rough numbers. The application of interval rough numbers eliminates 

the necessity for additional information for defining uncertain number intervals. In such a way, the quality of the 

existing data in the collective decision making process can be retained, as well as the experts’ perception, which 

is expressed through the aggregation matrix. The text below shows the steps governing the IR-DEMATEL 

method, which was used in the group decision making process. 

Step 1. Analysis of factors by experts. Assuming that there are m experts in the research and n observed factors 

(criteria), each expert should determine the degree to which criterion i affects criterion j. Comparative analysis of 

the  i
th 

and j
th 

 criteria pairwise by k expert is denoted as xij
e
, where: i=1,...,n; j=1,...,n. The value of each  xij

e 
pair 

is an integer, where: 0 – no influence; 1 – low influence; 2 – medium influence; 3 – high influence; 4 – very high 

influence. The judgment of e expert is presented as a non-negative matrix of n×n rank, and each element of the k 

matrix in equation X
e
=[x

k
ij]n×n denotes a non-negative number x

e
ij, where 1 ≤ k ≤ m.  

' '

12 12 1 1

' '

21 21 2 2

' '

1 1 2 2

0 ; ;

; 0 ;
;   1 , ;   1

; ; 0

e e e e

n n

e e e e

e n n

e e e e

n n n n nxn

x x x x

x x x x
X i j n e m

x x x x

 
 
     
 
 
  

 (23) 

where e

ijx
 
and 'e

ijx
 
represent linguistic variables taken from the preliminary defined linguistic scale used by expert 

e for the purpose of pairwise comparison.  

In accordance with this, X
1
, X

2
, …,X

m 
matrices are judgment matrices of each of m experts. The diagonal elements 

of the judgment matrix are all set to zero since the same factors do not influence each other.  

If expert k has a dilemma in the pairwise comparison of ( ,i j ), i.e. the expert e cannot decide between two values 

from the linguistic scale, then both values are converted to matrix X
e
. Then in position ( ,i j ) in matrix X

e
 we have 

different x
e
ij values, i.e. 

'e e

ij ijx x . If there is no uncertainty, then expert k unambiguously selects one value. If such 

is the case, then the value of the position ( ,i j ), i.e. 
'e e

ij ijx x  is converted to a comparison matrix (X
e
). For 

example, when comparing criteria in position (1,2), the expert cannot decide between two linguistic values (3 and 

4, for example), then 
12 3ex  , i.e.

' 4e

ijx   for position (1,2) in matrix X
e
. 

Step 2. Calculate the average matrix. Based on response matrices Xk=[x
k
ij]n×n obtained from each m expert, two 

matrices of aggregated sequence of experts X
*L

 and X
*'U 

 are obtained. 
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1 2 1 2 1 2

11 11 11 12 12 12 1 1 1

1 2 1 2 1 2

* 21 21 21 22 22 22 2 2 2

1 2 1 2 1 2

1 1 1 2 2 2

, , , ; , , , ,

, , , ; , , , ,

, , , ; ,

; ; ;

; ; ;

; , ; , ,;

L L kL L L kL L L kL

n n n

L L kL L L kL L L kL

L n n n

L L kL L L kL L L kL

n n n n n n nn nn nn

x x x x x x x x x

x x x x x x x x x
X

x x x x x x x x x

    
 

    
    


    



 (24) 

1' 2 ' ' 1' 2 ' ' 1' 2 ' '

11 11 11 12 12 12 1 1 1

1' 2 ' ' 1' 2 ' ' 1' 2 ' '

*' 21 21 21 22 22 22 2 2 2

1' 2 ' ' 1' 2 ' ' 1'

1 1 1 2 2 2

, , , ; , , , ,

, , , ; , , , ,

, , , ; ,

; ; ;

; ; ;

; ; ,

U U k U U U k U U U k U

n n n

U U k U U U k U U U k U

U n n n

U U k U U U k U U

n n n n n n nn

x x x x x x x x x

x x x x x x x x x
X

x x x x x x x

   

   


   

   2 ' ',; ,U k U

nn nnx x

 
 
 
 
 

  

 (25) 

where  1 2, , ,L L L kL

ij ij ij ijx x x x 
 

and  ' 1' 2 ' ', , ,U U U k U

ij ij ij ijx x x x 
 

denote the sequences used to describe the relative 

importance of criterion i in relation to criterion j. By applying equations (1) through (13), each sequence 
k

ijx
 
and 

'k

ijx
 
is converted to rough sequences   ( ), ( )kL kL k

ij ij ij

LLim LimRN x x x  
   

and  ' ' '( ), ( )k U k U

ij ij ij

k ULimRN x x Lim x  
 

, where

( )ij

kLm xLi
 
and 

'( )i

k U

jxLim
 
represent the lower limit, and ( )ij

kLm xLi
 
and '( )i

k U

jxLim
 
upper limit of rough sequences

 kL

ijRN x  and  'k U

ijRN x  respectively. 

These rough sequences are defined in matrices (24) and (25). Thus we obtain X
1L

, X
2L

, …, X
mL

 rough matrices 

(where m denotes the number of experts) for the first rough sequence  j

kL

iRN x
 
and X

1'U
, X

2'U
, …, X

m'U
 (where m 

denotes the number of experts) for the second rough sequence  'k U

ijRN x . Therefore for the first group of rough 

matrices X
1L

, X
2L

, …,X
mL

 in position (i,j) we obtain rough sequence 

   1 1 2 2( ), ( ) , ( ), ( ) ,..., ( ), ( )L

ij ij ij ij ij ij ij

L L L L mL mLLim Lim Lim LRN x x x x x x xim Lim Lim     



    

.  

In the same way, for the second rough matrices X
1'U

, X
2'U

, …,X
m'U

 in position (i,j) we obtain rough sequence

   1' 1' 2' ' 2 ' ' '( ), ( ) , ( ), ( ) ,..., ( ), ( )U U U U m UU

ij ij ij ij ij ij ij

m URN x xLim x x x xLim Lim Lim m m xLi Li      
     

.  

By applying equations (26) and (27) the mean rough sequences are as follows 

11 2

1

1

( ) ( , ,..., )
1

m
L eL

ij ij

eL L L eL

ij ij ij ij m
U eU

ij ij

e

z x
m

RN z RN x x x

z x
m









  

 





  (26) 

' '

1' 1' 2 ' '

' '

1

1

( ) ( , ,..., )
1

m
L e L

ij ij

eU U U e U

ij ij ij ij m
U e U

ij ij

e

z x
m

RN z RN x x x

z x
m









  

 





  (27) 

Where e denotes the e-th expert ( 1,2,...,e m ), ( )L

ijRN z
 
and 

'( )U

ijRN z
 
represent rough sequences that at the same 

time respectively represent the lower and upper limit of the interval rough number ( )ijIRN z , i.e.

'( ) ( ), ( )L U

ij ij ijIRN z RN z RN z    . 

Thus, the average interval rough matrix of average responses Z is obtained 

12 1

21 2

1 2

0 ( ) ( )

( ) 0 ( )

( ) ( ) 0

n

n

n n

IRN z IRN z

IRN z IRN z
Z

IRN z IRN z

 
 
 
 
 
 

  (28) 

Matrix Z denotes the starting effects caused by a specific factor as well as the starting effects obtained from other 

factors. The sum of each i-th row of matrix Z is the total direct effect that I delivers to other factors and the sum 

of each j-th column of matrix Z is the total direct effect that factor j receives from other factors. 

Step 3. Based on matrix Z , a normalized initial direct-relation matrix ( )ij n n
D IRN d


     is obtained, equation 

(29). By normalization, each element in matrix D is assigned a value between zero and one. The D matrix is 
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obtained when each element ( )ijIRN z of matrix Z is divided by rough number ( )IRN s , as shown in equations (29) 

through (32) 

12 1

21 2

1 2

0 ( ) ( )

( ) 0 ( )

( ) ( ) 0

n

n

n n

IRN d IRN d

IRN d IRN d
D

IRN d IRN d

 
 
 
 
 
 

  (29) 

where ( )ijIRN d
 
is obtained by applying equation (30) 

' '

' '

( )
( ) , , ,

( )

L U L U

ij ij ij ij ij

ij L U L U

ij ij ij ij

IRN z z z z z
IRN d IRN

IRN s s s s s

    
      
        

  (30) 

The value of interval rough number ( )IRN s  is obtained by applying equations (31) and (32) 

   

        

' '

1 1 1 1 1

' '

1 1 1 1

( ) max ( ) max ( ), ( ) ,max ( ), ( )

max ( ) ,max ( ) , max ( ) ,max ( )

n n n n n

ij ij ij ij ijj j j j j

n n n n

ij ij ij ijj j j j

IRN s IRN z Lim z Lim z Lim z Lim z

Lim z Lim z Lim z Lim z

    

   

    
   

   
      

    

   
 (31) 

i.e. 

        ' '

1 1 1 1
( ) max ,max , max ,max

n n n nL U L U

ij ij ij ijj j j j
IRN s z z z z

   

   
           (32) 

Step 4. By applying equations (33) through (35), the total-relation matrix ( )ij n n
T IRN t


    ) of rank n×n is 

calculated, where I  denotes the identity matrix of the nxn rank. The element ( )ijIRN t
 
denotes a direct influence 

of factor i on factor j, while T matrix denotes total relations among each pair of factors. 

Since each interval rough number is composed of two rough sequences, and every rough sequence includes an 

upper and lower approximation, then the normalized matrix of average perception ( )ij n n
D IRN d


     

can be 

divided into four sub-matrices, i.e.  ' ', , ,L U L UD D D D D        , where ( )L

ij n n
D Lim d


    , ( )U

ij
n n

D Lim d


 
 

, 

' '( )L

ij n n
D Lim d


    and ' '( )U

ij
n n

D Lim d


 
 

. Moreover,  lim
m

L

m
D O


 ,  lim

m
U

m
D O


 ,  'lim

m
L

m
D O


  and 

 'lim
m

U

m
D O


 , where O denotes a zero matrix. 

   

   

   

   

1
2

1
2

1
' 2 ' ' '

1
' 2 ' ' '

lim

lim

lim

lim

L L mL L

m

U U mU U

m

L L m L L

m

U U m U U

m

I D D D I D

I D D D I D

I D D D
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I D

I D D D I D

















    

    

    

 














  
 

(33) 

Therefore, the matrix of the total influences T will be obtained by calculating of the following elements 

   

   

   

   

1
2

1
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1
' 2 ' ' '

1
' 2 ' '

'

'

'

' '

lim

lim

lim

( )

( )

( )

li (m )

L L

ij n n

U U

ij n n

L L

i

L L mL L

m

U U mU U

m

L L m

j n n

U U

ij

L L

m

U U m U U

m

T Lim t

T Lim t

T Lim t
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T L

I D D D I D

I D D D I D

I D D D I D

I D D D I D im t

























     

     

  

   

   

   

  

   

      n n














 (34) 

where ( )L

ij n n
D Lim d


    , ( )U

ij
n n

D Lim d


 
 

, 
' '( )L

ij n n
D Lim d


     

and ' '( )U

ij
n n

D Lim d


 
 

. 
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Sub-matrices LT , UT , 'LT  and 'UT  together represent the interval rough matrix of the total influences

 ' ', , ,L U L UT T T T T        . Based on equations (33) and (34), a total-relation matrix is defined: 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n nn

IRN t IRN t IRN t

IRN t IRN t IRN t
T

IRN t IRN t IRN t

 
 
 
 
 
 

 (35) 

where ( ) ( ), ( )L U

ij ij ijIRN t RN t RN t     
is an interval rough number used to express the indirect effects of factor i  on 

factor j . Then matrix T reflects the inter-dependence of each pair of factors. 

Step 5. Calculating the sum of rows and columns of total-relation matrix T. In total-relation matrix T, the sum of 

rows and sum of columns are denoted as vectors R and C, rank n×1: 

 ' '

1 1 1 1
11 1

( ) ( ) , , ,
n

n n n nL U L U

i ij ij ij ij ijj j j j
nj n

IRN R IRN t t t t t
   

 

               
      (36) 

 ' '

1 1 1 1
11 1

( ) ( ) , , ,
n

n n n nL U L U

i ij ij ij ij iji i i i
ni n

IRN C IRN t t t t t
   

 

               
      (37) 

The value Ri denotes the sum of the i-th row of matrix T and shows the total direct and indirect effects that 

criterion I delivers to other factors. Similarly, the value Ci is the sum of the j-th column of matrix T, and 

represents the total direct and indirect effects that factor j receives from other factors. In cases where i=j,  

equation (Ri+Ci) indicates the impact of the factors and equation (Ri-Ci) indicates the intensity of the factors 

compared to others (Pamuĉar and Ćirović, 2015).  

Step 6. Setting a threshold value (α) and constructing a cause-and-effect relationship diagram. The threshold 

value (α) is determined by applying equation (38) which gives the mean of the elements in matrix T. 

1 1
( )

n n

iji j
IRN t

N


 
  


 

 (38) 

where N denotes the number of matrix elements (35). 

The construction of a cause-and-effect diagram visualizes the complex interrelationship and provides information 

in order to determine the most important factors and how they influence the affected factors. Factors tij with a 

value higher than threshold value α are selected and shown in the cause-and-effect diagram. 

Elements of matrix T with values higher than the threshold α are selected and shown in the diagram where the x-

axis represents IRN(Ri+Ci), and the y-axis IRN(Ri-Ci) and they are used to denote the relationship between two 

factors. When presenting the factor relationships, the arrow of the cause-and-effect relationship will be directed 

from the factor with a value lower than threshold value α to the element with a value higher than threshold value 

α. 

Weight coefficients of the clusters/criteria are calculated once the cause-and-effect relationship diagram (CERD) 

is constructed by applying the Analytic Network Process (ANP).  

 

4.2. The IR-ANP method 

ANP is a generalized AHP method that, unlike hierarchy structured models, takes into account different forms of 

dependency and feedback. The structure of the feedback is not linear and is closer to a network in which 

interdependent loops frequently appear. Matrices that describe these dependences are called supermatrices and 

should always follow the column stochastic principle, meaning that the sum of elements in each column should 

be equal to one (Saaty and Vargas, 2012). 

Calculating the relative weights of criteria using traditional ANP means that the levels of interdependence of the 

factors are treated as reciprocal values. In contrast, in using the DEMATEL method, the levels of 

interdependence of factors do not have reciprocal values, which is closer to real circumstances (Yang & Tzeng, 

2011). The following section deals with a novel approach, which integrates the IR-DEMATEL method into the 

IR-ANP method (IRD'ANP model). This integration is carried out as follows: 

Step 1. Developing an unweighted supermatrix. Prior to developing the unweighted supermatrix, a network 

model for the ANP method should be defined based on the total relation matrix and ERD. 
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An unweighted supermatrix is created when each level with the total degree of influence from the total relation 

matrix T is normalized by IR'DEMATEL. To normalize the matrix, it is necessary to determine the sum of 

elements of the matrix by columns. 
1 2

11 12 1 1 21 22 2 2 1 2
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11 12 1
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1 1
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c c c
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







































 
 



  (39) 

where matrix 11

cT  
contains factors from group D1 and influences factors from group D1. Matrix 21

cT  (40) contains 

factors from the group (criteria) D2 and influences with respect to the factors from group D2, etc.  

12 1 1 1

1 1 1

12 1 1 1

12 12 12

12 12 1212

12 12 12

( ) ... ( ) ... ( )

...

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

j m

i ij m

m m j m m

c c c

c c c c

c c c

IRN t IRN t IRN t

IRN t IRN t IRN tT

IRN t IRN t IRN t

 
 
 
 
 
 
 
 

  (40) 

Step 2. The normalized total influence matrix for criteria Tc
α
. Normalization takes place once Tc is developed. 

During the normalization process, the total-influence matrix Tc yields Tc
α
. The normalized matrix Tc

α 
is shown 

below (41) 
                                          

1 2

... ... ... ...
11 12 1 1 21 22 2 2 1 2
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nn

 
 
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 
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 
 
 
 
 
 
 
 
 
 
 
  

  (41) 

To explain this is the normalization of Tc
α11 

on dimension D1. The sum of factors c11, ...,c1m1  within group D1 is 

obtained by applying the following equation: 
111 11

11
( ) ( ),  1,2,...,

m

ci ijj
IRN d IRN t i m


    (42) 

where 
11( )cjIRN t

 
denotes the values of factor influences c11, ...,c1m1 in relation to factors from group D1, and 

11

11( )cIRN t elements denote their normalized values. 

Step 3. Developing unweighted supermatrix W. Since the total influence matrix Tc fills the interdependence 

between the dimensions and criteria, we can transpose the normalized total influence matrix Tc
α
 by the 

dimensions based on the basic concept of ANP resulting in unweighted supermatrix W =[Tc
α
]', equation (43) 
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

 

 (43) 

where W
11

 matrix denotes values of factor influences from D1 group in relation to factors from group D1. 

Step 4. Developing weighted normalized supermatrix W
α
. Elements of weighted normalized supermatrix W

α
 are 

obtained by multiplying elements of unweighted supermatrix W and appropriate elements of the normalized total 

influence matrix 
DT  . Elements of the normalized total influence matrix 

DT 

 
are obtained by normalizing the total 

influence matrix TD, as stated below (44).  
11 1 1

1

1

( ) ... ( ) ... ( )

...

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

j n

D D D

i ij in
D D D D

n nj nn

D D D

IRN t IRN t IRN t

T IRN t IRN t IRN t

IRN t IRN t IRN t

  

   

  

 
 
 
 
 
 
 
 

  (44) 

where ( ) ( ) / ( )j j

D D iIRN t IRN t IRN d  , and value of ( )iIRN d  
will be obtained as 

1
( ) ( )

n ij

i Dj
IRN d IRN t


 . 

Once the elements of matrix 
DT 

 
are obtained, the elements of new weighted supermatrix W

α
 are calculated. The 

elements of matrix W
α
 are obtained by multiplying the normalized total influence matrix of the dimensions 

DT 

 
and unweighted supermatrix W. 

Step 5. Finding the limit of weighted supermatrix W
α
. The weighted supermatrix is multiplied by itself multiple 

times to obtain a limit supermatrix, then the weight of each criteria is obtained. The weighted supermatrix can be 

raised to the limiting powers until the supermatrix has converged and become a long-term stable supermatrix to 

obtain global priority vectors, called IRD'ANP influence weights, such as lim k

k
W


 , where W denotes the limit 

supermatix, while k represents any number. 

  

4.3. The IR-MAIRCA method 

The basic assumption of the MAIRCA method is to determine the gap between the ideal and empirical weights. 

Summing the gaps for each criterion gives the total gap for every alternative observed. Finally, the alternatives 

are ranked, and the best ranked alternative is the one with the smallest value of the total gap. The MAIRCA 

method has 7 steps (Pamuĉar et al., 2014; Gigović et al., 2016): 

Step 1. Forming the initial decision matrix (Y ). The first step includes evaluation of l alternatives per n criteria. 

Based on response matrices Yk=[y
k
ij]l×n by all m experts we obtain two matrices of the aggregated sequences of Y

*L 

and Y
*'U 

experts 
1 2 1 2 1 2

11 11 11 12 12 12 1 1 1

1 2 1 2 1 2

* 21 21 21 22 22 22 2 2 2

1 2 1 2 1 2

1 1 1 2 2 2

, , , ; , , , ,

, , , ; , , , ,

, , , ; ,

; ; ;

; ; ;

; , ; , ,;

L L kL L L kL L L kL

n n n
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L n n n
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n n n n n n nn nn nn

y y y y y

y y y y y y

y y y y y

y y y y

y y y
Y

y y y y

    
 

    
    


    



 (45) 
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 (46) 
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where  1 2, , ,L L L kL

ij ij ij ijy y y y 
 

and  ' 1' 2 ' ', , ,U U U k U

ij ij ij ijy y y y 
 

denote the sequences for describing the relative 

importance of criterion i in relation to alternative j. By applying equations (1) through (13), sequences 
k

ijy  and 
'k

ijy
 

are transformed into rough sequences  j

kL

iRN y
 
and  'k U

ijRN y . Consequently, rough matrices Y
1L

, Y
2L

, …,Y
mL

 are 

obtained for the first rough sequence  j

kL

iRN y  and Y
1'U

, Y
2'U

, …, Y
m'U

 for other rough sequence  'k U

ijRN y , where 

m denotes the number of experts. Therefore, for the first group of rough matrices Y
1L

, Y
2L

, …,Y
mL

 we obtain rough 

sequences 

   1 1 2 2( ), ( ) , ( ), ( ) ,..., ( ), ( )L

ij ij ij ij ij ij i

L L mL

j

L L mLLim y Lim y Lim Lim Lim LR imN y y y y y     
    




, i.e. for the second group of rough 

matrices Y
1L

, Y
2L

, …,Y
mL 

we obtain rough sequence 

   1' 1' 2' ' 2 ' ' '( ), ( ) , ( ), ( ) ,..., ( ), ( )U U U U m UU

ij ij ij ij ij ij ij

m URN y yLim y y y yLim Lim Lim m m yLi Li      
     

.  

By applying equations (47) and (48) we obtain mean rough sequences 

11 2

1

1

( ) ( , ,..., )
1

m
L eL

ij ij

eL L L eL

ij ij ij ij m
U eU

ij ij

e

y y
m

RN y RN y y y

y y
m









  

 





  (47) 

' '

1' 1' 2 ' '

' '

1

1

( ) ( , ,..., )
1

m
L e L

ij ij

eU U U e U

ij ij ij ij m
U e U

ij ij

e

y y
m

RN y RN y y y

y y
m









  

 





  (48) 

Where e denotes the e-th expert ( 1,2,...,e m ), ( )L

ijRN z
 
and 

'( )U

ijRN z  denote the rough sequences of interval 

rough number '( ) ( ), ( )L U

ij ij ijIRN z RN z RN z    . 

 In such a way, interval rough vectors       1 2, ,...,i i i inA IRN y IRN y IRN y
 
of the mean initial decision matrix 

are obtained, where  ' ' '( ) ( ), ( ) , , ,L U L U L U

ij ij ij ij ij ij ijIRN y RN y RN y y y y y             
denotes the value of the i -th alternative 

as per the j -th criterion ( 1,2,..., ;i l 1,2,...,j n ). 

1 2

1 11 12 1

2 21 22 2

1 2

                ...      

( ) ( ) ... ( )

( ) ( ) ( )

... ... ... ... ...

( ) ( ) ... ( )

n

n

n

l l l ln l n

C C C

A IRN y IRN y IRN y

A IRN y IRN y IRN y
Y

A IRN y IRN y IRN y


 
 
 
 
 
   

(49) 

where l denotes the number of alternatives, and n denotes the total sum of the criteria. 

Step 2. Defining the preferences according to the selection of alternatives 
iAP . When selecting an alternative, a 

decision maker (DM) is neutral, i.e. does not have preferences for any of the proposed alternatives. Since any 

alternative can be chosen with equal probability, the preference per selection of one of l possible alternatives is as 

follows 

1

1
;  1,  1,2,...,

i i

l

A A

i

P P i l
l 

  
 

(50) 

where l denotes the number of alternatives.  

Step 3. Calculating the theoretical evaluation matrix elements ( pT ). Theoretical evaluation matrix ( pT ) is 

developed in   l x n  format (l denotes the number of alternatives, n denotes the number of criteria). Theoretical 

evaluation matrix elements ( ( )pijIRN t ) are calculated as the multiplication of the preferences according to 

alternatives 
iAP  and criteria weights ( ( ),  1,2,...,iIRN w i n ) obtained by applying the IR'DEMATEL method. 
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  (51) 

where 
iAP
 
denotes the preferences per selection of alternatives, ( )iIRN w  

the weight coefficients of the evaluation 

criteria, and ( )pijIRN t
 

the theoretical assessment of the alternatives for the evaluation criterion. Elements 

constituting the matrix Tp  are then defined by applying equation (52) 

( ) ( ), ( )L U

pij Ai i Ai i it P IRN w P RN w RN w         (52) 

Since the DM is neutral to the initial selection of alternatives, all preferences (
iAP ) are equal for all alternatives. 

Since preferences (
iAP ) are equal for all alternatives, then matrix (51) will have 1  x n  format (n denotes the 

number of criteria). 

     
1 2

' ' ' ' ' '

1 1 1 1 2 2 2 2
1

( )                       ( )               ...   ( )

, , , , , , ... , , ,
i

n

L U L U L U L U L U L U

p A p p p p p p p p pn pn pn pn
xn

IRN w IRN w IRN w

T P t t t t t t t t t t t t                         
 (53) 

where n denotes the number of criteria, 
iAP
 
the preferences according to the selection of alternatives, 

iw  the 

weight coefficients of the evaluation criteria. 

Step 4. Determining the real evaluation matrix (
rT ). Calculation of the real evaluation matrix elements (

rT ) is 

done by multiplying the real evaluation matrix elements (
pT ) and elements of the initial decision matrix ( X ) 

according to the following equation: 

 
' '

' '( ) ( ) ( ) , , , , , ,
L U L U

L U L U

rij pij nij pij pij pij pij ij ij ij ij
IRN t IRN t IRN x t t t t y y y y                      

 (54) 

where ( )pijIRN t
 

denotes elements of the theoretical assessment matrix, and ( )
ij

IRN y
 

denotes elements of 

normalized matrix ( )
ij

l n
Y IRN y



 
 

. Normalization of the mean initial decision matrix (49) is carried out by 

applying equations (55) and (56) 

a) For “benefit” type criteria (a higher criterion value is preferable) 
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( ) , , , , , ,

L U L U
L U L U ij ij ij ij ij ij ij ij

ij ij ij ij ij

ij ij ij ij ij ij ij ij

y y y y y y y y
IRN y y y y y

y y y y y y y y

   

       

                                       

 (55) 

b) For “cost” type criteria (a lower criterion value is preferable) 
' '

' '

( ) , , , , , ,

U L U L
L U L U ij ij ij ij ij ij ij ij

ij ij ij ij ij

ij ij ij ij ij ij ij ij

y y y y y y y y
IRN y y y y y

y y y y y y y y

   

       

                                       

 (56) 

where 
iy

 
and 

iy

 
denote the minimum and maximum values of the marked criterion by its alternatives, 

respectively: 

 'min ,L L

ij ij ij
j

y y y 
 

 (57) 

 'max ,U U

ij ij ij
j

y y y 
 

 (58) 

Step 5. Calculating the total gap matrix ( G ). Elements of matrix G  are obtained as the difference (gap) between 

the theoretical ( pijt ) and real evaluations ( rijt ), or by actually subtracting the elements of the theoretical 

evaluation matrix ( pT ) from the elements of the real evaluation matrix ( rT ) 

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

n

n

p r

l l ln l n

IRN g IRN g IRN g

IRN g IRN g IRN g
G T T

IRN g IRN g IRN g


 
 
   
 
 
 

  (59) 

where n denotes the number of criteria, l denotes the number of alternatives, and gij represents the gap for 

alternative i as per criterion j. Gap gij takes values from the interval rough number according to equation (60) 
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   ' ' ' '( ) ( ) ( ) , , , , , ,
ij

L U L U L U L U

ij pij r pij pij pij pij rij rij rij rijIRN g IRN t IRN t t t t t t t t t                   (60) 

It is preferable that the ( )ijIRN g value goes to zero ( ( ) 0ijIRN g  ) since the alternative with the smallest 

difference between the theoretical ( ( )pijIRN t ) and real evaluation ( ( )rijIRN t ) is chosen. If alternative 
iA  

for 

criterion 
iC  

has a theoretical evaluation value equal to the real evaluation value ( ( ) ( )pij rijIRN t IRN t ) then the 

gap for alternative 
iA  

for criterion 
iC  

is zero, i.e. alternative 
iA  per criterion 

iC  is the best (ideal) alternative.  

If alternative 
iA  

for criterion 
iC  

has a theoretical evaluation value ( )pijIRN t
 
and the real weight value is zero, 

then the gap for alternative 
iA  

for criterion 
iC  

is ( ) ( )ij pijIRN g IRN t . This means that alternative 
iA  

for criterion 

iC  
is the worst (anti-ideal) alternative.  

Step 6. Calculating the final values of the criteria functions (
iQ ) per alternatives. The values of the criteria 

functions are obtained by summing the gaps from matrix (59) for each alternative as per evaluation criteria, i.e. 

by summing matrix elements ( G ) per columns as shown in equation (61)  

1

( ) ( ),  1,2,...,
n

i ij

j

IRN Q IRN g i m


    (61) 

where n denotes the number of criteria, m denotes the number of chosen alternatives. 

The alternatives can be ranked by applying the rules governing the ranking of interval rough numbers described 

in Section 3 or by converting interval rough numbers into real numbers.  

The conversion of interval rough number  ' '( ) , , ,L U L U

i i i i iIRN Q Q Q Q Q         
into real number 

iQ  
is enabled by 

applying equations (62) and (63). The intervals between the upper and lower limits for both object classes, 

equations (9) and (10), are used for defining indicator
i  ( 0 1i  ) which is used for converting the interval 

rough number into a real number. 

' '( )
;   ( ) ;   ( )

( ) ( )

U L U Lui

i ui i i li i i

ui li

RB Q
RB Q Q Q RB Q Q Q

RB Q RB Q
     


 (62) 

'(1 )L U

i i i i iQ Q Q        (63) 

Step 7. Defining the dominance index of the best-ranked alternative (
,1D jA 

) and the final rank of alternatives. 

The dominance index of the best-ranked alternative defines its advantage in relation to the other alternatives. The 

dominance index is determined by applying equation (64). 

1

,1 ,   2,3,..,
j

D j

n

Q Q
A j m

Q



    (64) 

where 1Q  
denotes the criterion function of the best-ranked alternative, nQ  

denotes the criterion function of the 

last ranked alternative, 
jQ
 
denotes the criterion function of the alternative which is compared to the best-ranked 

alternative, and m denotes the number of alternatives. 

Once the dominance index is determined, the dominance threshold DI  is determined by applying equation (65)  

2

1
D

m
I

m


   (65) 

where m denotes the number of alternatives. 

Provided that the dominance index ,1D jA   
is greater or equal to dominance threshold DI  ( ,1D j DA I  ), the obtained 

rank will be retained. However, if the dominance index ,1D jA   is smaller than the dominance threshold DI  (

,1D j DA I  ), then it cannot be said with certainty that the first ranked alternatives have an advantage over the 

alternative being analyzed. The said restrictions can be shown by applying the following equation 

,1 , ,

,

,1 , ,1

    

    

D j D final j initial j

final j

D j D final j initial

A I R R
R

A I R R





  
 

  
  (66) 

where ,initial jR
 
denotes the initial rank of the alternative that is compared with the best-ranked alternative, ,final jR

 
denotes final rank of the alternative which is compared to the best-ranked alternative, DI

 
denotes the dominance 

threshold, and ,1D jA   
denotes the dominance index of the best-ranked alternative in relation to the alternative. 
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Provided that criterion 
,1D j DA I   is satisfied, then the rank of the alternative that is compared to the best-ranked 

alternative will be corrected and then treated as the best-ranked alternative and assigned the value "1
*
". In this 

way it is emphasized that the best-ranked alternative is characterized by a smaller advantage than the one 

specified in equation (65).   

Assume, for example, that the best-ranked alternative is compared to the second-ranked alternative and that the 

criterion 
,1 2D DA I   is satisfied. Then the second-ranked alternative will be assigned rank "1

*
". The comparison 

may proceed with the third-ranked alternative. If for the third-ranked alternative criterion 
,1 3D DA I   is satisfied, 

then the third-ranked alternative will be assigned rank "1
**

" and so on, until reaching the last alternative. 

Finally, correction of the initial ranks (
initialR ) is carried out for all alternatives satisfying criterion 

,1D j DA I  , 

while the ranks of alternatives satisfying the criterion 
,1D j DA I 

 
remain unchanged. Therefore, the final rank of 

alternatives (
finalR ) which is presented simultaneously with the initial rank of alternatives (

initialR ) is obtained. 

 

5. Application of the IRD'ANP-MAIRCA model: Bidder evaluation in the public procurement procedure 

Application of the hybrid IRN'ANP-MAIRCA model is shown using the example of ten bidders who submitted 

their tenders in a public procurement procedure launched by the public administration of the Republic of Serbia 

(Service for centralized public procurements and control of procurements for the City of Belgrade). Based on the 

above-mentioned analyses, and for the purpose of bidder evaluation, 12 criteria were defined: Duration of 

procurement (C11), Degree of realization (C12), Price (C13), Quality of Packaging (C24), Quality Certificate 

(C25), Time of delivery (C36), Quantities Needed (C37), Warranty Period (C48), Service (C49), Available 

capacities and resources (C510), Human resources (C511), Technical experience of the staff (C512). The criteria 

were grouped into five clusters: Safety in realization (D1), Time of delivery (D3), Post-warranty period (D4), and 

Functional characteristics (D5). In criterion (Cij) i denotes the cluster with criterion j grouped within it. 

In accordance with this (Figure 3), the hybrid IRN'ANP-MAIRCA model is demonstrated through three phases. 

Phase 1 applies the IR-DEMATEL model in order to determine relations among the evaluation criteria. Phase 2 

deals with the results of the IR-DEMATEL model (CER diagram and Total Relation Matrix) that is used for 

calculating the interval rough weight coefficients of the criteria by applying the IR-ANP model. Finally, Phase 3 

includes bidder evaluation by applying the IR-MAIRCA model. In addition to ranking, the evaluation of bidders 

also includes a comparison of the ranks obtained by other multi-criteria decision models (TOPSIS, VIKOR, 

MABAC, TODIM and ELECTRE I methods). The most appropriate bidder is selected based on the results 

obtained, Spearman’s rank correlation coefficient, and a sensitivity analysis of the IRN'ANP-MAIRCA model. 

The procedure is shown below. 

 

Phase 1: IR-DEMATEL model 

The IR-DEMATEL model is used here for the expert analysis of the criteria. This research included eight experts 

each with a minimum of ten years of experience in public procurements. The following scale was used to 

evaluate the clusters/criteria; 1 – very low influence; 2 – low influence; 3 – moderate influence; 4 – high 

influence; 5 – very high influence. All of the experts participated in evaluating the clusters and criteria. Once the 

evaluation was completed, eight matrices were obtained for pairwise comparison of the criteria 12x12 in size 

(Table 3) and eight matrices for pairwise comparison of the clusters, 5x5 in size (Supplementary file Table 1S). 

Table 3. Comparison of the evaluation criteria by experts 

 
DM1 

 
C11 C12 C13 C24 C25 C36 C37 C48 C49 C510 C511 C512 

C11 (0;0) (3;4) (3;3) (2;3) (2;3) (3;5) (3;3) (2;3) (2;5) (1;1) (4;4) (4;4) 
C12 (3;4) (0;0) (3;5) (1;5) (2;3) (2;3) (3;4) (3;3) (3;5) (2;3) (4;4) (4;4) 
C13 (3;4) (3;5) (0;0) (4;5) (3;4) (3;4) (2;3) (3;3) (3;5) (2;5) (4;5) (4;4) 
C24 (3;4) (5;5) (5;5) (0;0) (2;3) (2;3) (3;3) (3;4) (4;5) (3;4) (3;4) (5;5) 
C25 (4;5) (3;5) (3;4) (3;4) (0;0) (2;3) (3;5) (3;5) (4;4) (1;4) (3;4) (4;4) 
C36 (4;4) (4;4) (3;4) (2;4) (1;4) (0;0) (2;3) (2;5) (5;5) (2;4) (4;4) (3;4) 
C37 (4;4) (5;4) (4;4) (2;4) (2;4) (2;4) (0;0) (4;5) (2;5) (2;3) (3;3) (3;4) 
C48 (3;3) (4;4) (5;5) (1;4) (1;2) (4;5) (2;3) (0;0) (2;5) (1;1) (3;5) (3;4) 
C49 (3;3) (2;3) (4;5) (1;5) (2;2) (3;4) (4;5) (2;3) (0;0) (2;2) (3;5) (3;3) 
C510 (4;4) (2;3) (2;5) (5;5) (1;1) (2;3) (4;5) (2;3) (2;3) (0;0) (3;4) (3;4) 
C511 (2;2) (1;5) (2;3) (2;5) (1;1) (3;4) (3;3) (3;5) (2;5) (1;2) (0;0) (5;5) 
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C512 (3;3) (2;5) (1;3) (2;3) (4;5) (4;4) (3;3) (3;3) (3;5) (4;5) (4;4) (0;0) 
... 

 
DM8 

 
C11 C12 C13 C24 C25 C36 C37 C48 C49 C510 C511 C512 

C11 (0;0) (2;5) (2;5) (1;5) (1;5) (2;4) (2;5) (1;5) (1;4) (2;2) (3;4) (3;3) 
C12 (2;4) (0;0) (3;4) (1;4) (1;5) (2;5) (4;4) (2;4) (2;4) (2;2) (3;5) (3;5) 
C13 (1;4) (3;3) (0;0) (3;4) (3;5) (3;5) (2;4) (2;4) (2;3) (3;4) (4;4) (3;5) 
C24 (2;4) (4;4) (4;4) (0;0) (2;5) (2;4) (3;4) (4;4) (4;4) (2;5) (2;5) (4;5) 
C25 (3;5) (3;3) (3;5) (2;5) (0;0) (1;5) (4;4) (4;4) (3;5) (2;5) (3;5) (3;5) 
C36 (2;4) (4;3) (3;5) (1;5) (1;5) (0;0) (2;4) (1;4) (4;4) (3;4) (4;5) (3;5) 
C37 (2;4) (4;3) (4;5) (2;5) (2;5) (2;3) (0;0) (3;4) (1;4) (3;4) (3;4) (4;4) 
C48 (2;4) (4;5) (4;4) (1;5) (1;4) (4;4) (1;5) (0;0) (1;4) (2;2) (4;4) (4;4) 
C49 (1;3) (1;2) (4;4) (1;4) (2;4) (2;5) (3;4) (1;4) (0;0) (3;3) (2;3) (4;5) 
C510 (3;5) (1;2) (1;4) (4;4) (1;3) (1;4) (4;4) (1;5) (1;4) (0;0) (4;4) (4;4) 
C511 (1;2) (1;3) (1;4) (1;4) (1;3) (4;4) (2;4) (4;5) (1;4) (2;2) (0;0) (3;3) 
C512 (1;2) (2;4) (1;4) (1;4) (4;4) (4;5) (2;5) (5;5) (4;5) (3;4) (4;5) (0;0) 

 

Based on the evaluation matrices (Table 3 and Table 1S) it can be noticed that i and j values differ, meaning that 

the experts expressed uncertainty when defining the influences of these criteria in the course of the evaluation. In 

accordance with the procedure governing implementation of the IR-DEMATEL model, the initial comparison 

matrices in pairwise clusters/criteria were transformed into interval rough matrices. Thus, eight interval rough 

cluster and criteria matrices, equations (33) and (34), were obtained. Since the interval rough number is 

composed of two rough sequences (11) and (12) that form the IRN (13), we show the formation of individual 

rough sequences for a singe position in the criterion matrices (Table 3). Determining the interval rough 

comparison matrix elements X
1
, X

2
, …,X

8
 is shown using the example of obtaining the elements in position C11-

C12.  

The interval rough number (13) is composed of two rough matrices (11) and (12). For each matrix X
m
 two rough 

sequences in position C11-C12 that constitute the interval rough number (13) are obtained. Two classes of objects 

x
e
ij and x

e'
ij are chosen from the comparison matrices (Table 3) for the position C11-C12. Each class includes eight 

elements, as stated below: 

 
1 21 1 2;3;3;2;3;3;2;2ex  

 
 

1 2

'

1 1 3;4;4;5;3;5;4;4ez    

By applying equations (1) through (8), rough sequences (11) and (12) are formed for every object class. For the 

first class, we obtain: 

(2) 2Lim  , 
1

(2) (2 3 3 2 3 3 2 2) 2.5
8

Lim          ; 

1
(3) (2 3 3 2 3 3 2 2) 2.5

8
Lim          , (3) 3Lim  ; 

... 

(2) 2Lim  , 
1

(2) (2 3 3 2 3 3 2 2) 2.5
8

Lim          ; 

For the second object class: 

(3) 3Lim  , 
1

(3) (3+4+4+5+3+5+4+4) 4
8

Lim   ; 

1
(4) (3 4 4 3 4 4) 3.67

6
Lim        , 

1
(4) (4 4 5 5 4 4) 4.33

6
Lim        ; 

... 

1
(4) (3 4 4 3 4 4) 3.67

6
Lim        , 

1
(4) (4 4 5 5 4 4) 4.33

6
Lim         

In this way, the rough sequences that constitute interval rough number are obtained: 

    
1 2 1 2 1 2

1 1' 1

1 1 1 1 1 1( ) [2.5,3];   ( ) [3,4]   ( ) 2.5,3 , 3,4L URN x RN x IRN z      ; 

    
1 2 1 2 1 2

2 2' 2

1 1 1 1 1 1( ) [2,2.5];   ( ) [3.67,4.33]   ( ) 2,2.5 , 3.67,4.33L URN x RN x IRN z      ; 

... 
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    
1 2 1 2 1 2

8 8' 8

1 1 1 1 1 1( ) [2,2.5];   ( ) [3.67,4.33]   ( ) 2,2.5 , 3.67,4.33L URN x RN x IRN z      . The interval rough numbers for 

the other comparison matrices for pairs of criteria (Table 4) and clusters (Table 2S) are obtained by applying a 

similar method. 

Table 4. Interval rough comparison matrices for pairs of criteria 

DM1 

 
C11 C12 C13 C24 C25 ... C512 

C11 [(0.0,0.0),(0.0,0.0)] [(2.5,3),(3.67,4.33)] [(2.5,3),(3,3.75)] [(1.5,2),(3,3.75)] [(1.5,2),(4.25,5)] 

... 

[(3,4),(3.67,4.33)] 

C12 [(3,4),(4,3.75)] [(0.0,0.0),(0.0,0.0)] [(3,3.5),(3.75,5)] [(1,1.25),(3.75,5)] [(1.25,2),(3,4)] [(3.75,4),(3.5,4.67)] 

C13 [(3,5),(4.25,5)] [(3,3.5),(3,5)] [(0.0,0.0),(0.0,0.0)] [(3.25,4),(4.25,5)] [(3,3.25),(3,4.25)] [(3.25,4),(3.67,4.33)] 

C24 [(3,4),(3,3.5)] [(4.75,5),(4,5)] [(4.75,5),(4.25,5)] [(0.0,0.0),(0.0,0.0)] [(2,2.25),(3.5,4.67)] [(4.75,5),(4.75,5)] 

C25 [(4,5),(3,4.5)] [(3,3.25),(3.5,5)] [(3,3.25),(3.67,4.33)] [(2.25,3),(4,4.5)] [(0.0,0.0),(0.0,0.0)] [(3.67,4.33),(4,4.5)] 

C36 [(3.5,5),(3.75,4)] [(4,4.25),(3,4)] [(3,3.25),(4,4.5)] [(1.25,2),(3.67,4.33)] [(1,1.25),(3,4.25)] [(3,3.75),(4,4.5)] 

C37 [(3.25,4),(4.25,5)] [(4.25,5),(2.75,4)] [(4,4.25),(3.33,4.33)] [(0,2),(4,4.5)] [(2,2),(3,4)] [(3,3.5),(4,4.25)] 

C48 [(3,4),(3.5,4)] [(4,4.5),(3.67,4.33)] [(4.25,5),(3.5,5)] [(1,1),(3.33,4.33)] [(1,1),(2.5,4)] [(3,4),(3.75,4)] 

C49 [(2.75,4),(2.75,3)] [(1.25,2),(2,3)] [(4,4.5),(4.5,5)] [(1,1.5),(3.5,5)] [(1.5,2),(2.5,4)] [(3,4),(3,4.25)] 

C510 [(3.67,4.33),(4.5,5)] [(1.5,2),(2.25,3)] [(1.25,2),(3.5,5)] [(4.25,5),(4.5,5)] [(1,1.25),(2.67,4.5)] [(3,3.25),(3.5,4)] 

C511 [(2,3),(1,1.5)] [(1,1.25),(2.75,5)] [(1.5,2),(2.33,3.5)] [(1.25,2),(3.5,5)] [(1,1),(2.33,3.33)] [(3.25,5),(3.5,5)] 

C512 [(2.25,3),(1.67,2.33)] [(2,2.5),(4.25,5)] [(1,1.25),(3,3.25)] [(1.5,2),(2.33,3.5)] [(3.75,4),(4,4.5)] [(0.0,0.0),(0.0,0.0)] 

… 

DM8 

 
C11 C12 C13 C24 C25 ... C512 

C11 [(0.0,0.0),(0.0,0.0)] [(2,2.5),(4,5)] [(2,2.5),(3.75,5)] [(1,1.5),(3.75,5)] [(1,1.5),(3.5,4.67)] 

... 

[(2.67,3.33),(3,4)] 

C12 [(2.67,3.3),(3,3.75)] [(0.0,0.0),(0.0,0.0)] [(3,3.5),(3.33,4.33)] [(1,1.25),(3.33,4.33)] [(1,1.25),(4,5)] [(3,3.75),(4.25,5)] 

C13 [(2.3,3.67),(4,4.25)] [(3,3.5),(2.33,3.67)] [(0.0,0.0),(0.0,0.0)] [(3,3.25),(3.5,4.67)] [(3,3.25),(4.25,5)] [(3,3.25),(4,5)] 

C24 [(2.67,3.33),(3,3.5)] [(4,4.75),(3.67,4.33)] [(4,4.75),(3.5,4.67)] [(0.0,0.0),(0.0,0.0)] [(2,2.25),(4.25,5)] [(4,4.75),(4.75,5)] 

C25 [(3.67,4.33),(4.5,5)] [(3,3.25),(2.5,4)] [(3.0,3.25),(4.0,5.0)] [(2,2.25),(4.5,5)] [(0.0,0.0),(0.0,0.0)] [(3,4),(4.5,5)] 

C36 [(2.5,4.0),(3,3.75)] [(4,4.25),(2.67,3.33)] [(3.0,3.25),(4.5,5.0)] [(1,1.25),(4,5)] [(1,1.25),(4.25,5)] [(3,3.75),(4.5,5)] 

C37 [(2.5,3.67),(4,4.25)] [(4,4.25),(2.33,3.33)] [(4,4.25),(3.75,5)] [(2,2),(4.5,5)] [(2,2),(3.67,4.33)] [(3.5,4),(4,4.25)] 

C48 [(2.67,3.3),(3,3.5)] [(4,4.5),(4,5)] [(4,4.25),(3,4.5)] [(1,1),(3.75,5)] [(1,1),(3.5,5)] [(3.67,4.33),(3.75,4)] 

C49 [(2.33,3.3),(2,2.75)] [(1,1.25),(1.67,2.33)] [(4,4.5),(4,4.5)] [(1,1.5),(3,4.5)] [(1.5,2),(3.5,5)] [(3.67,4.33),(4.25,5)] 

C510 [(4.0,5.0),(4.0,4.5)] [(1,1.5),(1.5,2.67)] [(1,1.25),(3,4.5)] [(4,4.25),(4,4.5)] [(1,1.25),(3.25,5)] [(3.25,4),(3.5,4)] 

C511 [(1.67,2.33),(1,1.5)] [(1,1.25),(2,4)] [(1,1.5),(2.75,4)] [(1,1.25),(3,4.5)] [(1,1),(2.75,4)] [(2.67,3.67),(3,3.5)] 

C512 [(1.5,2.67),(1.0,2.0)] [(2,2.5),(3.5,4.67)] [(1,1.25),(3.25,4)] [(1,1.5),(2.75,4)] [(3.75,4),(4.5,5)] [(0.0,0.0),(0.0,0.0)] 

Next, the interval rough matrices referring to the responses are aggregated. Based on the clusters and criteria 

response matrices (Table 4 and 2S), and applying equations (26) and (27) the mean interval rough number 
'( ) ( ), ( )L U

ij ij ijIRN x RN x RN x     is obtained. Therefore, the mean interval rough matrices of average responses for 

the clusters and criteria are obtained, tables 5 and 3S. 

Table 5. Mean interval rough matrix of criteria 

 
C11 C12 C13 C24 ... C512 

C11 [(0.00,0.00),(0.00,0.00)] [(2.25,2.75),(3.83,4.67)] [(2.25,2.75),(3.38,4.38)] [(1.25,1.75),(3.38,4.38)] 

... 

[(2.83,3.67),(3.33,4.17)] 
C12 [(2.83,3.67),(3.50,3.75)] [(0.00,0.00),(0.00,0.00)] [(3.00,3.50),(3.54,4.67)] [(1.00,1.25),(3.54,4.67)] [(3.38,3.88),(3.88,4.83)] 

C13 [(2.67,4.33),(4.13,4.63)] [(3.00,3.50),(2.67,4.33)] [(0.00,0.00),(0.00,0.00)] [(3.13,3.63),(3.88,4.83)] [(3.13,3.63),(3.83,4.67)] 

C24 [(2.83,3.67),(3.00,3.50)] [(4.38,4.88),(3.83,4.67)] [(4.38,4.88),(3.88,4.83)] [(0.00,0.00),(0.00,0.00)] [(4.38,4.88),(4.75,5.00)] 
C25 [(3.83,4.67),(3.75,4.75)] [(3.00,3.25),(3.00,4.50)] [(3.00,3.25),(3.83,4.67)] [(2.13,2.63),(4.25,4.75)] [(3.33,4.17),(4.25,4.75)] 

C36 [(3.00,4.50),(3.38,3.88)] [(4.00,4.25),(2.83,3.67)] [(3.00,3.25),(4.25,4.75)] [(1.13,1.63),(3.83,4.67)] [(3.00,3.75),(4.25,4.75)] 
C37 [(2.88,3.83),(4.13,4.63)] [(4.13,4.63),(2.54,3.67)] [(4.00,4.25),(3.54,4.67)] [(1.00,2.00),(4.25,4.75)] [(3.25,3.75),(4.00,4.25)] 

C48 [(2.83,3.67),(3.25,3.75)] [(4.00,4.50),(3.83,4.67)] [(4.13,4.63),(3.25,4.75)] [(1.00,1.00),(3.54,4.67)] [(3.33,4.17),(3.75,4.00)] 

C49 [(2.54,3.67),(2.38,2.88)] [(1.13,1.63),(1.83,2.67)] [(4.00,4.50),(4.25,4.75)] [(1.00,1.50),(3.25,4.75)] [(3.33,4.17),(3.63,4.63)] 
C510 [(3.83,4.67),(4.25,4.75)] [(1.25,1.75),(1.88,2.83)] [(1.13,1.63),(3.25,4.75)] [(4.13,4.63),(4.25,4.75)] [(3.13,3.63),(3.50,4.00)] 

C511 [(1.83,2.67),(1.00,1.50)] [(1.00,1.25),(2.38,4.50)] [(1.25,1.75),(2.54,3.75)] [(1.13,1.63),(3.25,4.75)] [(2.96,4.33),(3.25,4.25)] 
C512 [(1.88,2.83),(1.33,2.17)] [(2.00,2.50),(3.88,4.83)] [(1.00,1.25),(3.13,3.63)] [(1.25,1.75),(2.54,3.75)] [(0.00,0.00),(0.00,0.00)] 

The mean elements of the interval rough comparison matrix in pairs of criteria in position C11 -C14 are established 

using equations (26) and (27): 
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where e denotes e-th expert ( 1,2,...,8e  ), 
1 41 2( )LRN z   

and 
1 4

'

1 2( )URN z   
denote the lower and upper limits of the 

interval rough number, respectively. The rough sequences 
1 41 2( )LRN z   and 

1 4

'

1 2( )URN z   
denote mean interval rough 

number
1 41 2( ) [(1.25,1.75),(3.38,4.38)]IRN z   . 

Once the mean matrix of the criteria (Table 5) and clusters (Table 2S) is obtained, the second step of the IR-

DEMATEL model is to determine the initial direct-relation matrix. By applying equations (30) through (32), the 

IR elements of the initial direct-relation matrix criteria (Table 6) and clusters (Table 4S) are calculated. 

Table 6. Interval rough initial direct-relation matrix of the criteria 

 
C11 C12 C13 C24 ... C512 

C11 [(0.00,0.00),(0.00,0.00)] [(0.07,0.07),(0.09,0.09)] [(0.07,0.07),(0.08,0.08)] [(0.03,0.05),(0.08,0.08)] 

... 

[(0.06,0.08),(0.08,0.08)] 
C12 [(0.05,0.09),(0.07,0.07)] [(0.00,0.00),(0.00,0.00)] [(0.09,0.09),(0.08,0.09)] [(0.03,0.08),(0.08,0.09)] [(0.10,0.11),(0.08,0.09)] 

C13 [(0.10,0.12),(0.10,0.09)] [(0.06,0.08),(0.06,0.08)] [(0.00,0.00),(0.00,0.00)] [(0.09,0.11),(0.09,0.09)] [(0.10,0.11),(0.08,0.09)] 

C24 [(0.06,0.08),(0.07,0.07)] [(0.10,0.12),(0.10,0.12)] [(0.10,0.12),(0.10,0.12)] [(0.00,0.00),(0.00,0.00)] [(0.10,0.12),(0.10,0.12)] 
C25 [(0.11,0.12),(0.10,0.09)] [(0.06,0.08),(0.07,0.09)] [(0.09,0.08),(0.08,0.09)] [(0.06,0.08),(0.10,0.09)] [(0.10,0.11),(0.08,0.09)] 

C36 [(0.08,0.10),(0.08,0.08)] [(0.08,0.11),(0.08,0.07)] [(0.09,0.08),(0.08,0.09)] [(0.03,0.05),(0.09,0.09)] [(0.09,0.10),(0.08,0.09)] 
C37 [(0.08,0.11),(0.10,0.09)] [(0.08,0.11),(0.06,0.07)] [(0.10,0.11),(0.09,0.12)] [(0.03,0.10),(0.10,0.09)] [(0.09,0.10),(0.09,0.12)] 

C48 [(0.08,0.11),(0.08,0.07)] [(0.10,0.11),(0.09,0.12)] [(0.10,0.12),(0.10,0.12)] [(0.03,0.08),(0.08,0.09)] [(0.10,0.11),(0.09,0.12)] 

C49 [(0.06,0.08),(0.06,0.06)] [(0.04,0.05),(0.04,0.05)] [(0.08,0.11),(0.10,0.12)] [(0.03,0.08),(0.08,0.09)] [(0.10,0.11),(0.09,0.12)] 
C510 [(0.10,0.11),(0.10,0.12)] [(0.04,0.05),(0.04,0.05)] [(0.06,0.04),(0.08,0.09)] [(0.10,0.10),(0.10,0.12)] [(0.09,0.09),(0.09,0.12)] 

C511 [(0.05,0.07),(0.02,0.03)] [(0.03,0.03),(0.06,0.09)] [(0.04,0.04),(0.06,0.07)] [(0.03,0.05),(0.08,0.09)] [(0.09,0.11),(0.08,0.08)] 
C512 [(0.04,0.05),(0.03,0.04)] [(0.06,0.06),(0.09,0.09)] [(0.03,0.03),(0.07,0.07)] [(0.03,0.05),(0.06,0.07)] [(0.00,0.00),(0.00,0.00)] 

The elements of the initial direct-relation matrix criteria (Table 6) in position C11 -C14 are are calculated using 

equations (30)-(32): 

   1 4 1 4 1 4 1 4 1 4
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The initial direct-relation matrix of clusters/criteria is transformed into a total relation matrix of clusters/criteria 

(Table 7 and 5S) by applying equations (33) and (34). 

Table 7. Total relation matrix of criteria 

 
C11 C12 C13 C24 ... C512 

C11 [(0.22,0.35),(0.56,0.78)] [(0.29,0.36),(0.62,0.94)] [(0.29,0.36),(0.7,1)] [(0.17,0.24),(0.72,1.02)] 

 

[(0.34,0.46),(0.76,1.01)] 
C12 [(0.34,0.49),(0.65,0.86)] [(0.27,0.34),(0.55,0.87)] [(0.36,0.43),(0.72,1.03)] [(0.19,0.26),(0.74,1.05)] [(0.41,0.53),(0.78,1.04)] 
C13 [(0.39,0.57),(0.68,0.88)] [(0.41,0.47),(0.62,0.95)] [(0.33,0.4),(0.66,0.95)] [(0.28,0.35),(0.77,1.05)] [(0.47,0.58),(0.8,1.04)] 

C24 [(0.43,0.6),(0.66,0.85)] [(0.48,0.55),(0.65,0.94)] [(0.49,0.56),(0.75,1.01)] [(0.22,0.29),(0.69,0.95)] [(0.55,0.67),(0.83,1.03)] 
C25 [(0.41,0.58),(0.71,0.91)] [(0.4,0.48),(0.67,0.99)] [(0.41,0.48),(0.79,1.07)] [(0.25,0.33),(0.82,1.09)] [(0.47,0.61),(0.86,1.08)] 

C36 [(0.37,0.55),(0.67,0.87)] [(0.4,0.47),(0.64,0.94)] [(0.39,0.45),(0.76,1.03)] [(0.21,0.29),(0.77,1.05)] [(0.43,0.57),(0.82,1.04)] 

C37 [(0.37,0.54),(0.67,0.85)] [(0.41,0.49),(0.61,0.9)] [(0.42,0.48),(0.73,0.99)] [(0.21,0.3),(0.76,1.01)] [(0.44,0.57),(0.79,0.99)] 
C48 [(0.35,0.51),(0.62,0.85)] [(0.39,0.47),(0.6,0.94)] [(0.4,0.47),(0.69,1.02)] [(0.2,0.27),(0.71,1.04)] [(0.43,0.56),(0.75,1.02)] 

C49 [(0.32,0.49),(0.56,0.79)] [(0.29,0.38),(0.52,0.85)] [(0.37,0.45),(0.65,0.96)] [(0.19,0.27),(0.65,0.97)] [(0.39,0.54),(0.68,0.97)] 
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C510 [(0.36,0.51),(0.62,0.83)] [(0.3,0.38),(0.55,0.86)] [(0.3,0.38),(0.67,0.97)] [(0.27,0.34),(0.71,0.98)] [(0.4,0.52),(0.72,0.97)] 

C511 [(0.26,0.42),(0.51,0.76)] [(0.25,0.33),(0.53,0.88)] [(0.26,0.34),(0.61,0.94)] [(0.16,0.24),(0.64,0.97)] [(0.34,0.48),(0.67,0.96)] 

C512 [(0.35,0.52),(0.61,0.79)] [(0.37,0.44),(0.63,0.9)] [(0.35,0.42),(0.72,0.96)] [(0.22,0.3),(0.73,0.98)] [(0.37,0.49),(0.7,0.9)] 

By summing the elements of the total relation matrix of clusters/criteria by rows, equation (36), and by columns, 

equation (37), the values of the total direct and indirect effects of criterion j on other criteria and other criteria on 

criterion j are obtained. These values together with the threshold value (α) of the total relation matrix are used for 

defining the cause-and-effect relationship diagram. The cause and effect relationship (CER) diagram (Figure 4) is 

formed to visualize the complicated causal relationship of criteria in a visible structural model. 

The elements in matrix T (Table 7 and 5S) with a value higher than the threshold value α will be identified and 

mapped on the diagram (Figure 4) where the x-axis denotes IRN(Ri+Ci), and y-axis denotes IRN(Ri-Ci). These 

values will be used for demonstrating the relationship between two factors. In the course of the demonstration, 

the arrow denoting the cause-effect membership is directed from the element with a value lower than α towards 

the element characterized by higher value than α.  
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Figure 4. ERD diagram 

 

Phase 2: The IR-ANP model 

This study applies the IR-ANP method to determine the weights of the 12 criteria and five clusters based on the 

total relation matrix of the clusters/criteria (T) obtained by applying the IR-DEMATEL model (Phase 1). The 

weight coefficients of the clusters/criteria are formed in Phase 2 based on the CER diagram. The first step in the 

IR-ANP model is to create a network model based on the CER diagram (Figure 5), while the elements of the 

interval rough unweighted and weighted supermatrix are calculated based on the total-relation matrix of the 

clusters/criteria. 
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Figure 5. Network model 

Here, the total-influence matrix T is included in the ANP model. The unweighted supermatrix and weighted 

supermatrix are obtained by applying equations (39) through (44). The influential weights of the stable matrix are 

defined once the unweighted supermatrix and weighted supermatrix are calculated, Table 6S. In the matrix shown 

in Table 6S each row denotes the weight of a particular criterion. Weights of the clusters/criteria were obtained 

based on the values specified in Table 6S, as shown in Table 8. 

Table 8. Weights of clusters/criteria 

Dimensions/Criteria Weight coefficient Rank 

Safety in procurement realization (D1) [(0.039,0.918),(0.047,1.017)] 1 
Duration of procurement  (C11) [(0.015,0.289),(0.017,0.331)] 6 
Degree of procurement realization (C12) [(0.013,0.255),(0.018,0.298)] 10 
Price (C13) [(0.011,0.374),(0.012,0.388)] 1 
Quality (D2) [(0.104,0.585),(0.023,0.623)] 3 
Quality of Packaging (C24) [(0.013,0.287),(0.014,0.308)] 8 
Quality Certificate (C25) [(0.090,0.298),(0.010,0.315)] 3 
Timeliness of delivery (D3) [(0.018,0.502),(0.020,0.578)] 5 
Time of delivery (C36) [(0.008,0.285),(0.009,0.311)] 9 
Quantities Needed (C37) [(0.010,0.217),(0.011,0.267)] 12 
Post-warranty period  (D4) [(0.018,0.597),(0.017,0.655)] 4 
Warranty Period (C48) [(0.090,0.288),(0.011,0.324)] 7 
Service (C49) [(0.007,0.309),(0.008,0.331)] 5 
Functional characteristics (D5) [(0.021,0.935),(0.025,1.031)] 2 
Available capacities and resources (C510) [(0.008,0.364),(0.009,0.379)] 2 
Human resources (C511) [(0.003,0.314),(0.005,0.373)] 4 
Technical experience of the staff (C512) [(0.010,0.257),(0.011,0.279)] 11 
In addition to the weight coefficients, Table 8 also includes prioritization of the clusters/criteria. It can be noticed 

that clusters D1 and D5 are the most influential since they include criteria characterized by the highest weight 

coefficients, Price (C13) and Available capacities and resources (C510). These are followed by D3 and D4 

clusters. This prioritization of clusters/criteria has confirmed the recommendations on the importance of the 

criteria suggested by Dobi, et al. (2010) and Chai, et al. (2013).  

Since this novel approach has not been widely recognized in the literature, the results (Table 8) were validated by 

comparing them with the results obtained by traditional approaches such as the crisp DEMTEL-ANP model (Kuo 

et al., 2015) and fuzzy DEMTEL-ANP model (Pamuĉar and Ćirović, 2015). Symmetric triangular fuzzy numbers 

were used when calculating the weight coefficients for the DEMTEL-ANP model. The comparison results are 

shown in Figure 6, based on which it can be concluded that all three methods generate sequences of weight 

coefficients characterized by similar ranks (C13> C510> C25> C511> C49> C11> C48> C36> C12> C512> C37), but 

various values. 
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Figure 6. Comparison of the criteria weighting 

Figure 6 shows that each interval number is presented using two color shades (dark and light). The darker shade 

denotes the upper and lower range, while the lighter shade denotes the intersection of two rough sequences of the 

interval rough number. 

The crisp DEMTEL-ANP model calculates the weight coefficients by applying crisp numbers. In this way, 

uncertainty and vagueness in the group decision making process can be ignored. On the other hand, in the fuzzy 

DEMTEL-ANP and IR-DEMTEL-ANP models, uncertainties in the group decision making process are 

represented by various dimensions of fuzzy and rough intervals of weight coefficients. Various interval values 

are the result of different mechanisms employed for treating uncertainty and subjectivity. While the fuzzy 

DEMTEL-ANP model deals with uncertainty by means of fuzzy sets with previously defined boundaries that 

cannot be either extended or narrowed, the IRN boundaries are flexible and can be adjusted to the uncertainties 

contained in the data. The previously defined boundaries in the fuzzy DEMTEL-ANP model additionally 

increase subjectivity in the group decision making process since the boundaries are defined based on subjective 

assessment. This can significantly affect the degree of uncertainty, which is expressed in the interval size, unlike 

in the IR-DEMTEL-ANP model. In this way, the proposed IR-DEMTEL-ANP model can efficiently measure 

uncertainties in the course of evaluating criteria and reflect the perception of a decision maker. The results of the 

weight criteria are used in Phase 3 to select the most favorable bidder. 

 

Phase 3: The IR-MAIRCA method 

The IR-MAIRCA method is applied to evaluate the alternative solutions once the weight coefficients of the 

criteria are determined. Eight experts participated in the evaluation of 10 bidders who submitted their tenders in 

the public procurement procedure. As with the IR-DEMATEL model, the experts evaluated the alternative 

solutions by assigning the relevant values specified on a 1–9 scale: 1 – very low influence; 2 – medium low 

influence influence; 3 – low influence; ... ; 8 – high influence; 9 – very high influence. If expert e cannot decide 

between two values from the linguistic scale, then both values from the scale are given ( ';e e

ij ijx x ). The evaluation 

results are shown in Table 7S. Once the evaluation process was completed by applying equations (45) through 

(48) the decisions were aggregated and initial decision making matrix Y was obtained, Table 9. 

Table 9. Aggregated initial decision-making matrix Y 
Alter. C11 C12 C13 C24 … C512 

A1 [(4,6),(4.63,6.7)] [(5.63,7.41),(6.58,8.06)] [(3.87,6.6),(4.86,7.33)] [(2.04,4.96),(3.04,5.96)] 

... 

[(2.87,4.93),(3.5,5.9)] 
A2 [(8.35,8.95),(8.35,8.95)] [(7.58,8.63),(8.44,8.89)] [(5.09,7.75),(5.85,8.28)] [(7.58,8.63),(8.44,8.89)] [(6.93,8.55),(7.8,8.8)] 

A3 [(6.2,7.77),(7.19,8.33)] [(4.36,7.38),(5.31,7.91)] [(3.7,4.9),(4.7,5.9)] [(4,6),(5,7)] [(7.08,8.37),(8.1,8.94)] 

A4 [(6.49,8.37),(6.55,8.61)] [(5.81,8.38),(6.54,8.77)] [(5.77,8.22),(6.65,8.71)] [(7.16,8.73),(7.93,8.88)] [(6.8,7.8),(7.8,8.8)] 
A5 [(6.62,7.82),(7.35,8.38)] [(5.86,7.67),(6.89,8.39)] [(5.21,6.63),(5.75,7.42)] [(6.19,7.33),(6.84,8.26)] [(5.59,7.1),(6.58,7.85)] 

A6 [(4.49,6.37),(4.84,7.28)] [(3.86,6.33),(4.79,7.26)] [(4.68,7.4),(5.29,7.98)] [(2.65,5.09),(3.18,6.02)] [(4.72,6.67),(5.3,7.42)] 
A7 [(6.64,7.8),(6.7,8.16)] [(5.9,7.67),(6.08,8.1)] [(3.97,6.56),(4.63,6.84)] [(2.47,5.28),(3,6.12)] [(6.78,8.26),(7.8,8.8)] 

A8 [(5.85,7.5),(6.11,7.88)] [(5.78,8.1),(6.22,8.41)] [(4.71,6.4),(5.47,7.43)] [(1.91,5.02),(2.3,6.06)] [(6.36,8.21),(7.23,8.71)] 
A9 [(4.2,5.36),(4.84,6.3)] [(2.38,5.04),(3.34,5.92)] [(3.33,5.97),(3.85,6.96)] [(3.58,6.27),(4.41,7.17)] [(2.69,6),(3.01,6.55)] 

A10 [(6.17,8.26),(5.81,8.29)] [(5.87,7.26),(5.97,7.59)] [(4.58,6.4),(5.47,7.43)] [(4.29,7.2),(4.86,7.91)] [(4.3,7.36),(4.85,8.12)] 

After aggregating the evaluation criteria (Table 9) the preferences were determined according to the selection of 

alternatives PAi=1/m=0.10, where m denotes the number of alternatives (bidders). Since in the evaluation 

procedure, all bidders are equal (no advantage is given to any particular bidder), preferences PAi for all 

alternatives are similar, i.e. PA1=PA2=...=PA10=0.10. Based on preferences PAi, and by applying equation (52), the 

theoretical evaluation matrix (Tp) rank 1xn is obtained (Table 10). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 10. IR matrix of theoretical evaluation Tp 

Criterion Theoretical evaluations (tp) Criterion Theoretical evaluations (tp) 

C11 [(0.002,0.029),(0.002,0.033)] C37 [(0.001,0.022),(0.001,0.027)] 
C12 [(0.001,0.026),(0.002,0.030)] C48 [(0.001,0.029),(0.001,0.032)] 
C13 [(0.001,0.037),(0.001,0.039)] C49 [(0.001,0.031),(0.001,0.033)] 
C24 [(0.001,0.029),(0.001,0.031)] C510 [(0.001,0.036),(0.001,0.038)] 
C25 [(0.009,0.030),(0.001,0.032)] C511 [(0.001,0.031),(0.001,0.037)] 
C36 [(0.001,0.029),(0.001,0.031)] C512 [(0.001,0.026),(0.001,0.028)] 

By applying equation (52) we obtain element C11 from Table 10: 

       
11 1 1( ) 0.10 0.015,0.289 , 0.017,0.331 0.002,0.029 , 0.002,0.033p At P IRN w            

In order to determine the real evaluation matrix Tr (Table 11), the elements of the theoretical evaluation matrix 

(Table 10) are multiplied with the normalized elements of the aggregated initial decision matrix (Table 9). The 

initial decision making aggregated matrix is normalized by applying equations (54) and (55). 

Table 11. Real evaluation matrix Tr 
Alter. C11 C12 C13 ... C512 

A1 [(0.000,0.012),(0.000,0.018)] [(0.001,0.020),(0.001,0.026)] [(0.000,0.023),(0.000,0.029)] 

… 

[(0.000,0.009),(0.000,0.014)] 

A2 [(0.001,0.029),(0.001,0.033)] [(0.001,0.024),(0.002,0.030)] [(0.000,0.031),(0.001,0.036)] [(0.001,0.024),(0.001,0.027)] 

A3 [(0.001,0.022),(0.001,0.029)] [(0.000,0.020),(0.001,0.025)] [(0.000,0.011),(0.000,0.018)] [(0.001,0.023),(0.001,0.028)] 

A4 [(0.001,0.026),(0.001,0.031)] [(0.001,0.024),(0.001,0.029)] [(0.000,0.034),(0.001,0.039)] [(0.001,0.021),(0.001,0.027)] 

A5 [(0.001,0.022),(0.001,0.029)] [(0.001,0.021),(0.001,0.028)] [(0.000,0.023),(0.001,0.029)] [(0.000,0.018),(0.001,0.023)] 

A6 [(0.000,0.014),(0.000,0.022)] [(0.000,0.015),(0.001,0.022)] [(0.000,0.028),(0.000,0.033)] [(0.000,0.016),(0.000,0.021)] 

A7 [(0.001,0.022),(0.001,0.028)] [(0.001,0.021),(0.001,0.026)] [(0.000,0.022),(0.000,0.025)] [(0.001,0.023),(0.001,0.027)] 

A8 [(0.001,0.020),(0.001,0.026)] [(0.001,0.022),(0.001,0.028)] [(0.000,0.021),(0.000,0.030)] [(0.001,0.023),(0.001,0.027)] 

A9 [(0.000,0.008),(0.000,0.015)] [(0.000,0.010),(0.000,0.016)] [(0.000,0.018),(0.000,0.026)] [(0.000,0.014),(0.000,0.017)] 

A10 [(0.001,0.025),(0.001,0.029)] [(0.001,0.019),(0.001,0.024)] [(0.000,0.021),(0.000,0.0309] [(0.000,0.019),(0.000,0.024)] 

By applying equation (55), elements A1-C11 from Table 9 were normalized: 

   
1 1 1

1 1

'

A1 C1 A1 C1 A1 C1
C1 C1

min , min 4.0,8.35,6.2,6.49,6.62,4.49,6.64,5.85,4.2,6.17 4L Ly y y

      

   
1 1 1

1 1

'

A1 C1 A1 C1 A1 C1
C1 C1

max , max 6.7,8.95,8.33,8.61,8.38,7.28,8.16,7.88,6.3,8.29 8.95U Uy y y

      

   
1A1 C1

4 4 6 4 4.63 4 6.70 4
( ) , , , 0.00,0.404 , 0.127,0.546

8.95 4 8.95 4 8.95 4 8.95 4
IRN y 

        
                  

By multiplying the normalized element 
1A1 C1( )IRN y   

by IRN(t1) from Table 10, i.e. by applying equation (54) we 

obtain the element in position A1-C11 from Table 11: 

           
1A1 C1( ) 0.002,0.029 , 0.002,0.033 0.00,0.404 , 0.127,0.546 0.000,0.012 , 0.000,0.018rIRN t                

In the next step, elements of the theoretical evaluation matrix (Tp) are deducted from the elements of the real 

evaluation matrix (Tp) to obtain the total gap matrix (G). By summing the rows of total gap matrix we obtain the 

total gap for every alternative, equation (61). Based on the values of the total gap between the theoretical and real 

evaluations, the initial evaluation of the alternatives is carried out, Table 12. 

Table 12. Values of the total gaps for the alternatives and their ranking 

 Alter. Alternative gap IRN(Qi) Crisp Qi Initial rank AD,1-j Final rank 

A1 [(-0.258,0.349),(-0.187,0.388)] 0.0738 9 0.623 9 
A2 [(-0.342,0.344),(-0.284,0.378)] 0.0246 2 0.051 1* 

A3 [(-0.312,0.346),(-0.244,0.382)] 0.0440 6 0.276 6 

A4 [(-0.352,0.345),(-0.292,0.378)] 0.0202 1 0.000 1 

A5 [(-0.329,0.345),(-0.263,0.380)] 0.0339 3 0.159 3 

A6 [(-0.289,0.349),(-0.218,0.385)] 0.0576 8 0.434 8 

A7 [(-0.301,0.347),(-0.236,0.380)] 0.0482 7 0.325 7 

A8 [(-0.312,0.347),(-0.249,0.382)] 0.0424 4 0.258 4 

A9 [(-0.232,0.351),(-0.166,0.389)] 0.0862 10 0.766 10 

A10 [(-0.311,0.348),(-0.249,0.385)] 0.0437 5 0.273 5 

It is desirable for an alternative to have the smallest possible gap between the theoretical and real evaluations, and 

therefore the initially best-ranked alternative is the one with the smallest total gap value, i.e., A4. In order to 
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define the total gap of the final ranked alternatives presented by IRN, they are transferred into crisp values by 

applying equations (62) and (63). The dominance index of the best-ranked alternative in relation to other 

alternatives is defined by applying equation (64) as shown in (Table 12). If the dominance index AD,1-j of the best-

ranked alternative in relation to all other alternatives is higher than or equal to the dominance threshold ID, as 

stated in equation (65), then the initial rank will be taken as final. However, if the dominance index AD,1-j for any 

other alternative is smaller than ID we cannot say that the best-ranked alternative has enough advantage and 

therefore it will be assigned a rank "1*". In our example, the dominance threshold is ID=0.090. Since the 

dominance index of alternative A4 in relation to alternative A2 (initially the second-ranked alternative) is smaller 

than ID we conclude that A4 does not have enough advantage in relation to A2, and thus alternative A2 will be 

assigned the corrected rank "1*". The other values AD,1-j are higher than ID so the initial rank is retained for the 

other alternatives. 

 

6. Discussion of results 

There are two parts to the discussion of the results. The first is a comparison of the results with those obtained 

from the most frequently used multi-criteria decision making methods (MCDM) for bidder evaluation in the 

public procurement procedure. The literature analysis presented in Table 1 shows that the most frequently used 

methods are TOPSIS and ELECTRE I (Roy, 1968) and therefore these were used for the comparison of results. 

In addition to the TOPSIS and ELECTRE I methods, the MABAC (Pamuĉar and Ćirović, 2015), TODIM 

(Gomes and Lima, 1992; Gomes and Rangel, 2009) and VIKOR methods were also used for comparison since 

they give stabile and reliable results (Ağirgün, 2012; Ruzgys et al., 2014; Mahmoodi and Jahromi, 2014; 

Pamuĉar and Ćirović, 2015). These methods were modified by applying the fuzzy technique since this is the most 

frequently applied approach to the treatment of uncertainty. 

The second part is a sensitivity analysis of the IR-D'ANP-MAIRCA model through thirty six scenarios. A 

detailed analysis of both the first and second parts is given below. 

 

6.1. Comparing the ranks of the MCDM methods 

The ranks obtained by the IR-MAIRCA model were compared to those of the other MCDM methods mentioned. 

A comparative presentation of the ranks from various MCDM techniques is shown in figure 7.  

0

1

2

3

4

5

6

7

8

9

10

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

IR'MAIRCA

F'TOPSIS

F'MABAC

F'VIKOR

F'ELECTRE

F- TODIM

 
Figure 7. Ranking of alternatives 

Since the F-ELECTRE I method does not define the final rank but only the interrelated dominance of 

alternatives, based on alternative dominance (Figure 8), it obtained the rank 

A4=A2=A5>A7>A3>A6>A8>A10>A1>A9.  
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Figure 8. Dominance of alternatives according to the F-ELECTRE I method 

Ranking of the alternatives according to the presented methods shows that alternative A4 is best-ranked 

according to all the methods excluding the F-TOPSIS and F-TODIM methods in which it is second-ranked (A2 is 

first-ranked). Alternative A2 is also best-ranked according to the IR-MAIRCA method, since alternative A4 is 

not dominant enough. A2 is also specified as the best-ranked alternative according to the F-TOPSIS and F-

ELECTRE I methods, and second-ranked according to the F-VIKOR and F-MABAC methods.  

Before making a final decision, the reliability of the results was evaluated in relation to other MCDM techniques. 

Spearman’s rank coefficient of correlation between ranks is one of the most usable and important measuring 

instruments for determining correlation between the results obtained by various approaches (Ghorabaee et al., 

2015). In addition, this coefficient is suitable when dealing with ordinal and/or ranked variables. In this paper, 

Spearman’s coefficient (rk) was used for defining the statistical importance of the difference between the ranks 

obtained by the IR-MAIRCA model and other approaches. A comparison of the results obtained by applying 

Spearman’s coefficients is shown in Table 13. 

Table 13. Rank correlation of the models 
Spearman’s coefficient F-TOPSIS F-MABAC F-VIKOR F-ELECTRE I F-TODIM Average value 

rk 0.958 0.958 0.933 0.818 0.945 0.922 

The results show a significant correlation between the ranks of the different MCDM methods. Based on the 

recommendations of Ghorabaee et al., (2015) all rk values higher than 0.80 show considerably high correlation. 

Since in this particular case all rk values are considerably higher than 0.80, with a mean value 0.922, it can be 

concluded that there is considerable strong correlation between the proposed approach and the other MCDM 

techniques tested. Therefore it can be concluded that the proposed rank is confirmed and credible. 

 

6.2. Sensitivity analysis 

The results of the MCDM methods depend to a great extent on the values of the weight coefficients of the 

evaluation criteria. Sometimes, ranking of the alternatives may change by modifying the weight coefficients, 

which will result in change in the sensitivity analysis during the MCDM process. Therefore this section covers a 

sensitivity analysis of the alternative ranks related to changes in the weight coefficients of the criteria. The 

sensitivity analysis was carried out through 36 scenarios (Table 14), classified into three phases.  

Table 14. Sensitivity analysis scenarios 

Weights of criteria Ranking 

wc1=1.45× wc1(old) A4>A2>A5>A10>A3>A8>A7>A6>A1>A9 

wc2=1.45× wc2(old) A4>A2>A5>A8>A3>A10>A7>A6>A1>A9 

... 

wc11=1.45× wc11(old) A4>A2>A5>A8>A3>A10>A7>A6>A1>A9 

wc12=1.45× wc12(old) A4>A2>A5>A8>A3>A10>A7>A6>A1>A9 

wc1=1.65× wc1(old) A2>A4>A5>A10>A3>A8>A7>A6>A1>A9 

wc2=1.65× wc2(old) A4>A2>A5>A8>A3>A10>A7>A6>A1>A9 

... 

wc11=1.65× wc11(old) A4>A2>A5>A8>A3>A10>A7>A6>A1>A9 

wc12=1.65× wc12(old) A4>A2>A5>A8>A3>A7>A10>A6>A1>A9 

wc1=1.85× wc1(old) A2>A4>A5>A10>A3>A7>A8>A6>A1>A9 

wc2=1.85× wc2(old) A4>A2>A5>A8>A7>A3>A10>A6>A1>A9 
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... 

wc11=1.85× wc11(old) A4>A2>A5>A8>A7>A3>A10>A1>A6>A9 

wc12=1.85× wc12(old) A2>A4>A3>A8>A7>A5>A10>A6>A9>A1 

In Phase 1, the weight coefficients of the criteria in the first twelve scenarios were increased/decreased by 45%. 

In each of the twelve scenarios, one coefficient with its weight increased by 45 % was favoured. In the same 

scenario, the weight coefficients of the remaining criteria were decreased by 45 %. In Phase 2, in the next twelve 

scenarios a similar procedure was applied with the weight coefficients being increased/decreased by 65%. 

Finally, in phase 3 in twelve scenarios, the weight coefficients were increased/decreased by 85%. Changes in the 

ranking are shown in Figure 9 and Table 14.  
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Figure 9. Sensitivity analysis of the alternative ranking through 36 scenarios 

The results (Figure 6 and Table 14) show that assigning various weights to the criteria through different scenarios 

results in a change in the ranks of individual alternatives, thus proving that the model is sensitive to changes in 

the weight coefficients. Comparison of the best-ranked alternatives (A4 and A2) in scenarios 1 through 36 

(results in Table 12) confirmed the ranking of alternatives A4 and A2. Analysis of the ranks through 36 scenarios 

showed that alternative A4 retained its rank in 30 scenarios (it remained the best-ranked alternative), while in the 

remaining six scenarios it was second-ranked. The second-ranked alternative A2 retained its rank in 26 scenarios 

while in 7 scenarios it was the best-ranked alternative. Changing the criteria weights through scenarios resulted in 

changing the ranks of the remaining alternatives. However, it can be said that these changes were not so drastic, 

which is confirmed by correlation of the ranks through scenarios (Table 15). 

Table 15. Correlation of the ranks through 36 scenarios 

Scenario rk Scenario rk Scenario rk 
S1 0.958 S13 0.958 S25 0.921 
S2 0.982 S14 0.982 S26 0.945 
S3 0.958 S15 0.945 S27 0.824 
S4 0.958 S16 0.958 S28 0.945 
S5 0.958 S17 0.909 S29 0.848 
S6 0.982 S18 0.885 S30 0.824 
S7 0.994 S19 0.958 S31 0.861 
S8 0.982 S20 0.958 S32 0.945 
S9 0.945 S21 0.885 S33 0.861 
S10 0.958 S22 0.861 S34 0.894 
S11 0.982 S23 0.982 S35 0.933 
S12 0.982 S24 0.958 S36 0.824 

Spearman’s correlation coefficients (rk) were obtained by comparing the initial ranks of the IR-D'ANP-MAIRCA 

model (Table 12) with the ranks obtained through the scenarios. Based on Table 13 it can be noticed that there is 

significant correlation of the ranks since in 2/3 of the scenarios, the value rk is higher than 0.909, while in the 

remaining scenarios it exceeded the value of 0.824. The mean value rk in all scenarios is 0.922, which is a 

considerably high correlation. Since all rk values are considerably higher than 0.80 it can be concluded that there 

is a considerably high correlation between the ranks and that the proposed rank is both confirmed and credible. 
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7. Conclusion 

Respecting uncertainties in the multi-criteria decision making process is a significantly important aspect of both 

objective and unprejudiced decision making. The multi-criteria decision making process is usually associated 

with numerous difficulties, since information on multiple attributes needs to be presented using precise numerical 

values. This is the result of both the complexity and ambiguity of real indicators, as well as imprecision in the 

human cognitive process. This paper presents a novel approach for treating uncertainty by introducing interval 

rough numbers. The basic idea of applying algorithms in the decision making process that are based on the 

interval approach includes the application of interval numbers for presenting attribute values. The advantages of 

applying IRN are numerous. Interval rough numbers facilitate the decision making process exclusively by using 

internal knowledge for presenting the decision attributes. In such a way both the subjectivity and assumptions 

that may affect the attribute value and final selection of alternatives are eliminated. When applying interval rough 

numbers, only the structure of the given data is used instead of additional/external parameters. Therefore, only 

uncertainties already contained in data are used, which considerably increases the objectivity of the decision 

making process. The other advantage of this approach is the suitability of IRN for application in sets dealing with 

minor data in cases when traditional statistical models are not suitable. 

The application of interval rough numbers in the multi-criteria decision making process is presented through a 

hybrid model composed of the interval rough D'ANP model and the interval rough MAIRCA method. The IR-

D'ANP-MAIRCA model is applied to a case study: the evaluation of bidders in the public procurement 

procedure. The study shows that interval rough numbers can be efficiently applied in multi-criteria decision 

making models by respecting the uncertainties identified in the decision making process. Another important 

segment of this paper is the introduction of novel IR-DEMATEL, IR-ANP and IR-MAIRCA models developed 

by various authors which are a significant contribution to the development of MCDM literature. The proposed 

models enable the evaluation of alternatives regardless of dilemmas in the decision making process and lack of 

quantitive information. The results and sensitivity analysis of the IR model show significant stability of the 

results and point towards successful use of the model in the future. 

Since this novel approach is still underrepresented in the literature and in MCDM, future research should be 

based on the application of IRN in crisp models for determining the weight coefficients of criteria (for example, 

the interval rough AHP model or the interval rough Best-Worth method,). Further integration of the interval 

rough approach into existing MCDM models would make a significant contribution to dealing with both 

uncertainty and subjectivity in the decision making process. 
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