Places and Technologies 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

Nova Gorica, Slovenia, 18.–19.6.2015

BOOK OF CONFERENCE PROCEEDINGS

A healthy city is one that is continually creating and improving those physical and social environments and expanding those community resources which enable people to mutually support each other in performing all the functions of life and developing to their maximum potential. Health Promotion Glossary (1998)

ORGANIZERS:

SPONZORS:

KREAL, Creative Aluminium, Kidričevo, Slovenia

SUPPORTERS:

CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana

614:711.4(082)(0.034.2)

INTERNATIONAL Academic Conference Places and Technologies (2 ; 2015 ; Nova Gorica)

Keeping up with technologies to make healthy places [Elektronski vir] : book of conference proceedings / [2nd International Academic Conference] Places and Technologies 2015, Nova Gorica, 18.-19. 6. 2015 ; editors Alenka Fikfak ... [et al.]. - Ljubljana : Faculty of Architecture, 2015

ISBN 978-961-6823-68-5

1. Gl. stv. nasl. 2. Dodat. nasl. 3. Fikfak, Alenka 279986432

University of Belgrade, Faculty of Architecture, Serbia

University of Ljubljana, Faculty of Architecture, Slovenia

Professional Association, Urban Laboratory, Serbia

University of Ljubljana

Faculty of Architecture

General Hospital, »Dr Franca Derganca« Nova Gorica, Slovenia Places and Technologies 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

BOOK OF CONFERENCE PROCEEDINGS

Editors:

Alenka Fikfak, Eva Vaništa Lazarević, Nataša Fikfak, Milena Vukmirović, Peter Gabrijelčič

Nova Gorica, Slovenia

Contents

INTRODUCTION	10
HEALTHY CITY - TECHNOLOGY AND URBAN RESILIENCE Eva Vaništa Lazarević	11
A PLACE FOR PLACES: LIVE AND STAY	13
NOVA GORICA	14
MATELARČON	14
HEALTHY CITY - TECHNOLOGY AND URBAN RESILIENCE Ružica Božović Stamenović	17
INNOVATING AT LISBON'S WATERFRONT PLACE,	
THE "TAGUS PLATFORM" PROJECT	19
Pedro Ressano Garcia	
TOPIC I: Architecture and Health	19
HEALTHY BUILDINGS: THE ICF CLASSIFICATION AS A DESIGNING TOOL Alberto Arenghi, Daniele Malgrati, Michele Scarazzato	20
THE HEALTH ASPECTS OF SUSTAINABLE ARCHITECTURE	26
Kosara Kujundžić	
UNIVERSITY AND DWELLERS' ASSOCIATIONS TOGETHER FOR CREATING SUSTAINABLE AND HEALTHY URBAN ENVIRONMENTS	32
Lucia Martincigh, Francesco Bianchi, Cecilia De Marinis, Marina Di Guida, Giovanni Perrucci	
"VERTICAL" CITY	39
Damjana Lojaničić	
HEALTHY WORKPLACE: UTOPIA OR REALITY OF MODERN	
ARCHITECTURAL DESIGN IN BOSNIA AND HERZEGOVINA	45
TIJANA VUJIČIĆ, TANJA TRKULJA	
SUSTAINABLE DESIGN FOR IMPROVEMENT OF HEALTHY BUILT ENVIRONM	ENT52
Aleksandar Petrovski, Ognen Marina, Georgi Dimkov, Dimitar Papasterevski	
HEALTHCARE DESIGN REVISITED – NEW APPROACHES TO USER – CENTRIC, EFFICIENT AN EFFECTIVE DESIGN	59
Eva Vaništa Lazarević, Jelena Marić, Milena Vukmirović, Goran Radović	
BUILDING MATERIALS AND HUMAN HEALTH: DESIGNERS' PERSPECTIVE	74
Saja Kosanović, Alenka Fikfak, Mirko Grbić	

PLACES AND TECHNOLOGIES 2015 KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES 18 & 19 JUNE 2015 NOVA GORICA SLOVENIA

2ND INTERNATIONAL ACADEMIC CONFERENCE

c	UIS NUVA GURICA SLUVENIA	
	TOWARDS A NEW UNDERSTANDING OF HEALTHY PLACE Saja Kosanović, Eva Vaništa Lazarević, Slađan Timotijević	80
	ENVIRONMENTAL FEATURES OF BUILDING MATERIALS OF TRADITIONAL OHRID HOUSE AND THEIR CONTRIBUTION TO ITS HUMAN DESIGN RADMILA TOMOVSKA, ANA <u>RADIVOJEVIĆ</u>	86
	HEALTHY ARCHITECTURE AS A RESULT OF BALANCED INTEGRATION OF ARTIFICIAL AND NATURAL RULES Dženana Bijedić, Rada Čahtarević, Senaida Halilović	93
	HEALTHY ARCHITECTURE FOR CHILDREN	101
	MEDICINE AND ARCHITECTURE IN THE CONTEMPORARY SOCIETY Ilka Čerpes	107
	MARGINALISATION OF LOCAL COMMUNITIES ALONG THE STRAIT OF SINGAPORE Magnus Nickl, Verena Stecher	115
	THE SCALE OF ACUTE CARE HOSPITALS IN SERBIA - THE NEED FOR RETHINKING Marko Matejić	121
	ARCHITECTURE AND HEALTHY LIVING SPACE Goran Radović	127
	TOPIC II: Physical Planning and Quality of Place	140
	DEVELOPMENT DIRECTIONS OF URBAN STRUCTURE THROUGH REGISTRATION OF CHANGES OF SEGMENTS OF URBAN COMPLEX VELIMIR STOJANOVIĆ	141
	THE TRANSFORMATION OF THE SQUARE CARICA MILICA IN NOVI SAD (SERBIA) Ivana Sentić, Ksenija Hiel	147
	VARESE LIGURE: AN ITALIAN RURAL MUNICIPALITY WHICH HAS IMPLEMENTED AN EXEMPLARY MODEL OF SUSTAINABLE DEVELOPMENT GIOVANNI SERGI, CARLO BERIO, GIULIA CANTON, GIACOMO CROVO	154
	CYBERPARKS CHALLENGES - NEW DIGITAL MEDIA FOR ATTRACTIVE URBAN OPEN SPACES	163
	Ina Šuklie Erjavec, Carlos Smaniotto Costa MEDIA ARCHITECTURE AND SUSTAINABLE ENVIRONMENT	171

Jasna Čikić-Tovarović, Jelena Ivanović-Šekularac, Nenad Šekularac

2ND INTERNATIONAL ACADEMIC CONFERENCE PLACES AND TECHNOLOGIES 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

18 @ 19 JUNE 2015 NOVA GORICA SLOVENIA

IMPLEMENTATION OF NORWEGIAN EXPERIENCE TO SLOVENIAN HOSPITAL SECTOR	179
Alenka Temeljotov-Salaj, Svein Bjoerberg, Simon Vrhunec, Andrej Baričič	179
TOWARDS OPEN, THERMODYNAMIC CITY P&T 2015	186
Marija Bojović, Irena Rajković, Sanja Paunović Žarić	
INTERWEAVING OF BANJALUKA'S URBAN AND RURAL LANDSCAPES	194
DIJANA SIMONOVIĆ	
AN APPLICATION OF THE "ENVIRONMENTAL ISLAND": A PRESCRIPTIVE TOOL TO CREATE HEALTHIER URBAN ENVIRONMENTS	201
LUCIA MARTINCIGH, CECILIA DE MARINIS, JANET HETMAN	
DEVELOPMENT OF PUBLIC SQUARES IN NORTH WESTERN EUROPEAN CITY CENTRES	209
BOB GIDDINGS, JAMES CHARLTON	
MUSIC AND SOUND AS A TOOL INTO DESIGNING HEALTHIER ENVIRONMENT Anja Kostanjšak, Morana Pap, Tena Lazarević	216
DESIGNING PARKING STRUCTURES IN SERVICE OF PUBLIC HEALTH	225
Tanja Trkulja, Tijana Vujičić	
DESIGNING THE WORKING ENVIRONMENT WHEN PLANNING BUSINESS ZONES	232
FOUR PARADIGMS FOR THE VENETO REGION'S CENTRAL AREA	240
MUNICIPALITY POLICY AS KEY FACTOR FOR THE ROLE OF ARCHITECTURE AND TECHNOLOGY IN PUBLIC HEALTH	248
DEJAN VASOVIĆ, NATAŠA ĆUKOVIĆ IGNJATOVIĆ, DUŠAN IGNJATOVIĆ	
INDUSTRIAL HERITAGE IN ALBANIA AND THE OPPORTUNITIES FOR REGENERATION AND ADAPTIVE RE-USE	255
FLORIAN NEPRAVISHTA	
THE POSSIBILITIES OF THE APPLICATION OF THE CONCEPT OF HEALTHY CITY IN ILLEGAL SETTLEMENTS IN SERBIA	266
BRANISLAV ANTONIĆ, BISERKA MITROVIĆ	
URBAN REGENERATION AS A TOOL FOR POPULATION HEALTH IMPROVEMENT FILIP PETROVIĆ	272
URBANIZATION OF METROPOLITAN AREAS – THE IMPORTANCE	
OF NEW SPATIAL DATA ANALYSIS TOOLS	281
Hanna Obracht-Prondzynska	

2ND INTERNATIONAL ACADEMIC CONFERENCE: PT 2015

AQUAPONICS BASED ARTIFICIAL BIOSPHERE INCLUDED IN ARCHITECTUR MITIGATION OF NEGATIVE IMPACTS TO POSITIVE ADDED VALUES OF UR	-
SPATIAL STRUCTURES ON LOCAL, REGIONAL AND GLOBAL SCALE PIOTR MAREK SMOLNICKI	288
INSTITUTIONAL CHALLENGES IN THE URBAN PLANNING WATER SENSITIVE PLACES Višnja Sretović Brković, Matija Brković	297
TOPIC III: Lifetime Communities and Participation	308
COHOUSING FOR BUILDING REUSE	309
Adolfo Baratta, Fabrizio Finucci, Annalisa Metta, Luca Montuori	
HOW TO DESIGN HEALTHY BUILDING FOR HEALTHY LIVING? Anja Jutraž, Sanja Štimac	315
PARTICIPATORY URBAN PLANNING AND PUBLIC POLICY	326
Višnja Kukoč	
TOPIC IV: Cultural Patterns and Sensitivity	332
SENSE OF PLACE IN ARCHITECTURAL DESIGN:	
TOWARDS HEALTHY PLACES P&T 2015	333
Eglé Navickiené	
HOLIDAY HOMES IN THE VICINITY OF SPLIT, CROATIA, DESIGNED	
BY FRANO GOTOVAC – CONTINUITY OF ARCHITECTURAL HERITAGE	341
VESNA PERKOVIĆ JOVIĆ	247
ARCHITECTURE AND ITS AFTERLIFE; GREEN URBANITY GABRIELLA MEDVEGY, GÁBOR VERES	347
INVESTIGATION OF RELATIONSHIP BETWEEN CULTURE	
OF THE INHABITANTS AND QUALITY OF HOUSING	353
Ana Špirić, Sanja Trivić	
UTOPIAN PROJECTS DRAWINGS AS INDICATORS	
OF MODERN SOCIETY NEEDS	361
Vladimir Kovač	
YOUTH AND THE FEELING OF SAFETY IN PUBLIC SPACES	368
Svetlana Stanarević, Stevan Tatalović	

TOPIC V: Health Intensive Care	375
OPTICAL COHERENCE TOMOGRAPHY - GUIDED PRIMARY PERCUTANEOUS CORONARY INTERVENTION IN ACUTE MYOCARDIAL INFARCTION IGOR KRANJEC	375
FRACTAL ARCHITECTURE OF THE CORONARY ARTERY TREE Matjaž Klemenc	386
HUMANIZATION OF DIALYSIS: GREEN AND COZY Jadranka Buturović-Ponikvar	392
CONTEMPORARY CHALLENGES OF PUBLIC HEALTH AND AN ACTIVE APPROACH TO OVERCOME THEM Marko Vudrag	397
ANALYSIS AND CONTEMPORARY APPROACH OF SPACE DESIGN OF INTESIVE PSYCHIATRIC CARE UNIT Nevena Dutina, Aleksandra Dutina	406
TOPIC VI: Inclusive and Accessible Environment	413
TOWARDS INCLUSIVE FIRE SAFETY DESIGN Valeria Tatano, Elisabetta Carattin	414
INCLUSIVE AND THERAPEUTIC URBAN ENVIRONMENT: INVOLVING USERS IN THE DESIGN PROCESS Ilaria Garofolo, Barbara Chiarelli	422
DEVELOPING INNOVATIVE SOCIAL HOUSING TO FOSTER INCLUSIVE COMMUNITIES	429
SILVIA GRION, PAOLA COLONI URBAN PUBLIC SPACES ACCESSIBLE FOR ALL: A CASE STUDY IN A HISTORICAL DISTRICT OF ROME	436
LUCIA MARTINCIGH, CECILIA DE MARINIS ECOLOGICAL LANDSCAPE, PHYTODEPURATION AND MANMADE	
WETLANDS IN MAGOK LAKE PARK, SEOUL Cristian Suau, Carmelo Zappulla	445
ADVANCED SYSTEMS FOR IMPROVING COMMON HEALTH Urška Kalčič, Janez Peter Grom	458
INCLUSIVE AND ACCESSIBLE ENVIRONMENT: PLANNING FOR THE FUTURE Sankalp Shukla, Apoorva Gangrade, Anshula Gumber	466
FACTS4STOPS – USER NEEDS REGARDING PUBLIC TRANSPORT STATIONS AND ENVIRONMENT CHRISTINE CHALOUPKA-RISSER, DANIEL BELL	472

2ND INTERNATIONAL ACADEMIC CONFERENCE PLACES AND TECHNOLOGIES 2015 KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

18 @ 19 JUNE 2015 NOVA GORICA SLOVENIA

TOPIC VII: Environmentally Friendly Transport	478
SHIFTING TO MORE ENVIRONMENTALLY FRIENDLY MODES IN LONG-DISTANCE TRANSPORT	479
Aleksandra Nešić, Ivana Čavka, Olja Čokorilo	
ASSESSING PUBLIC TRANSPORT EFFICIENCY IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT	485
Evgenia Yosifova	
THE ROLE OF PUBLIC TRANSPORT PRIORITY	
IN SUSTAINABLE URBAN MOBILITY	492
Dino Šojat, Davor Brčić, Marko Slavulj	
APPLICATION OF PV MODULES ON NOISE BARRIERS	498
Budimir Sudimac, Andjela Dubliević	
PLANNING OF ELECTRIC TRANSPORTATION IN THE KRŠKO REGION	505
Ana Tivadar, Stanko Manojlović, Simon Podkoritnik	
INTELLIGENT TRANSPORT SYSTEMS FOR SMART CITIES	511
Bia Mandžuka, Liupko Šimunović, Mario Ćosić	
TOPIC VIII: Building Technologies	518
RETROFITTING OF MULTI-FAMILY BUILDINGS TOWARDS	
HEALTHIER SETTLEMENTS	519
Aleksandra Krstić-Furundžić, Aleksandra Đukić	
FERROCEMENT ARCHITECTURAL STRUCTURES	
FROM THE ASPECT OF SOCIAL WELL-BEING	526
Aleksandra Nenadović	
DAYLIGHT ANALYSES OF "READY-MADE" FAÇADES WITH	
MODULAR OPENINGS - CASE STUDY LOCATION IN PODGORICA	532
Sanja Paunović Žarić, Irena Rajković, Marija Bojović	
ACTIVE SOLAR SYSTEMS – STUDY OF POTENTIAL FOR APPLICATION	500
IN THE MATERIALIZATION OF TOURIST FACILITIES IN MONTENEGRO	539
Irena Rajković, Sanja Paunović Žarić, Marija Bojović	
PREFABRICATED PASSIVE HOUSE VENTILATED FAÇADE	E 40
PANEL SYSTEM WITH RECYCLED CONCRETE	548
LUBOMIR MIŠČEVIĆ , IVANA BANJAD PEČUR, BOJAN MILOVANOVIĆ	
POTENTIAL ANALYSIS OF DYNAMIC, THERMAL BUILDING SIMULATIONS AND DEVELOPMENT OF MEASUREMENT AIDED SIMULATION TECHNIQUE	556

ISTVÁN KISTELEGDI, BÁLINT BARANYAI, BÁLINT BACHMANN

	56
COMPARISON OF THE SUSTAINABILITY OF DIFFERENT TECHNIQUES FOR THE STRENGTHENING OF REINFORCED CONCRETE SLABS TANYA CHARDAKOVA, MARINA TRAYKOVA	56
SYSTEMS FOR THE REQUALIFICATION OF NON-LISTED ARCHITECTURE: THE <i>"ADAPTIVE EXOSKELETON"</i>	50
FRANCESCA GUIDOLIN	
RECONSTRUCTION AND REVITALIZATION OF THE COMPLEX SENARA, WITHII THE MONASTERY HILANDAR, IN ORDER TO ADAPT TO MODERN TRENDS AN	
SOCIAL CHANGES Jelena Ivanović-Šekularac, Jasna Čikić-Tovarović, Nenad Šekularac	5
RENEWAL OF JUGOMONT PREFABRICATED RESIDENTIAL BUILDINGS JU-61 Ivan Mlinar, Lea Petrović Krajnik, Tamara Marić	58
BROWNFIELDS AS PLACES AND RENEWABLE ENERGY SYSTEMS AS TECHNOLOGIES: POTENTIALS AND RISKS IN CASE OF SERBIA Anita Stoilkov-Koneski, Zoran Koneski	5
LANDFILL JAKUŠEVEC IN ZAGREB – POTENTIAL FOR NEW SPACE IDENTITY AND ENHANCEMENT OF QUALITY OF LIFE	5
Lea Petrović Krajnik, Damir Krajnik, Ivan Mlinar	
	6
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES	
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES ALEKSANDRA STUPAR, ALEKSANDRA ĐUKIĆ	
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES ALEKSANDRA STUPAR, ALEKSANDRA ĐUKIĆ RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES	6
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES ALEKSANDRA STUPAR, ALEKSANDRA ĐUKIĆ RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES NIKOLA Z. FURUNDŽIĆ, DIJANA P. FURUNDŽIĆ, ALEKSANDRA KRSTIĆ- FURUNDŽIĆ HEALTHY PLACES, ACTIVE PEOPLE	6 6
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES ALEKSANDRA STUPAR, ALEKSANDRA ĐUKIĆ RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES NIKOLA Z. FURUNDŽIĆ, DIJANA P. FURUNDŽIĆ, ALEKSANDRA KRSTIĆ- FURUNDŽIĆ	60 61 62 62
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES ALEKSANDRA STUPAR, ALEKSANDRA ĐUKIĆ RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES NIKOLA Z. FURUNDŽIĆ, DIJANA P. FURUNDŽIĆ, ALEKSANDRA KRSTIĆ- FURUNDŽIĆ HEALTHY PLACES, ACTIVE PEOPLE KATARINA ANA LESTAN, IVAN ERŽEN, MOJCA GOLOBIČ THE IMPACT OF QUALITY OF PEDESTRIAN SPACES ON WALKING AS A MODERATE PHYSICAL ACTIVITY	6 6 6
TOPIC X: Active Living and Health OPEN PUBLIC SPACES FOR HEALTHIER CITIES ALEKSANDRA STUPAR, ALEKSANDRA ĐUKIĆ RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES NIKOLA Z. FURUNDŽIĆ, DIJANA P. FURUNDŽIĆ, ALEKSANDRA KRSTIĆ- FURUNDŽIĆ HEALTHY PLACES, ACTIVE PEOPLE KATARINA ANA LESTAN, IVAN ERŽEN, MOJCA GOLOBIČ THE IMPACT OF QUALITY OF PEDESTRIAN SPACES ON WALKING AS A MODERATE PHYSICAL ACTIVITY	6 6 6

STUDENT PHYSICAL EDUCATION FOR HEALTHY LIFESTYLE ALES GOLIA	646
KEY POINTS OF HUMAN AWARENESS AND EMERGENCY PLANNING. SCHOOLS AS A CASE STUDY	655
Maddalena Coccagna ANOTHER SIDE OF THE COMFORT OF LIVING – ELECTROMAGNETIC POLLUTION Nebojša Arsić, Jordan Radosavljević, Nataša Fikfak, Saša Štatkić	661
RECOMMENDATIONS FOR UNIVERSAL DESIGN OF OUTDOOR LEISURE AND RECREATIONAL AREAS LARA SLIVNIK	667
TOPIC XII: Social Networks and Human Basic Needs	673
TOPIC XII: Social Networks and Human Basic Needs VISUAL REPRESENTATION AND EXPERIENCE OF PLACE: CASE STUDY ALHAMBRA IN GRANADA Isidora Karan, Vedrana Ikalović	673 674
VISUAL REPRESENTATION AND EXPERIENCE OF PLACE: CASE STUDY ALHAMBRA IN GRANADA	
VISUAL REPRESENTATION AND EXPERIENCE OF PLACE: CASE STUDY ALHAMBRA IN GRANADA Isidora Karan, Vedrana Ikalović BEYOND THE QUANTIFIED SELF: A LOOK AT THE SOCIAL DIMENSION OF HEALTH	674

FERROCEMENT ARCHITECTURAL STRUCTURES FROM THE ASPECT OF SOCIAL WELL-BEING

Aleksandra Nenadović

PhD, Assistant Professor, University of Belgrade, Faculty of Architecture, Bulevar kralja Aleksandra 73/II, Belgrade, aleksandra@arh.bg.ac.rs

ABSTRACT

The examples of use of ferrocement architectural structures are more numerous in recent years, with the aim to realize efficient and economically viable solutions. This paper analyzes the ferrocement architectural structures from the aspect of social wellbeing. The ferrocement structures are analyzed as subsystem of the building, whose behavior is directed towards the aim of system – building - ecological quality. The present analysis pointed to the advantages and disadvantages of ferrocement structures from the aspect of social well-being during the use phase of a building, that is, to the necessity of a complex and systemic approach to quality of building structures, in function of achieving the ecological quality of buildings.

Keywords: sustainable building, ecological quality of buildings, ferrocement structures, social well-being.

INTRODUCTION

Raising the level of sustainability of building refers to the "reduction of negative environmental impact and resource consumption due to construction, use and dismantling of constructed facilities, with a simultaneous increase in life quality of and health and safety in the built environment" (Working Group for Sustainable Construction, 2001). In this process, it is important to assess the ecological quality of buildings (Nenadović, 2014), which includes quality assessment on the basis of indicators within the criteria of social well-being¹.

The building structure, along with other elements of architectural space, determines the performances of the building. The building structure should be designed and evaluated as a sub-system of the building, whose behavior is directed toward the aim of system-building, which within the criteria of social well-being refers to the realization of building performances that meet the needs and expectations of its users during the use phase of a building (Nenadović, 2014).

¹ The indicators for integrated assessment of ecological quality of building are classified by the interrelated and conditioned sustainability criteria into three groups: indicators within the environmental criteria, indicators within the criteria of social well-being, and indicators within the criteria of economic well-being (Nenadović, 2014).

There are numerous examples of applications of ferrocement architectural structures in recent times in the world, with the aim to realize efficient and economically viable solutions². Ferrocement as a special form of thin-walled reinforced concrete³, along with the economic viability, offers a wide range of functional and shaping possibilities. Compared to the conventional reinforced concrete, it is characterized by "enhanced elasticity, fine cracks, lower permeability to water vapor and gases, higher ductility and durability"(IFS Committees 10, 2001). Various structures and their elements can be built from ferrocement, including the elements of complex geometry, with the ability to build without formwork. Building the architectural structures in ferocement is not to demanding, from the technological point of view, neither it require special equipment.⁴

This paper analyzes the ferrocement architectural structures from the aspect of social well-being, on the basis of following indicators: protection and safety; aspects of comfort; electromagnetic field levels; quality of spatial organization; space adaptability; ease of building maintenance; visual aspects.

FERROCEMENT ARCHITECTURAL STRUCTURES FROM THE ASPECT OF SOCIAL WELL-BEING

Protection and safety

Ferrocement monolithic structures have proved as reliable and durable, when it comes to the safety of people during the natural disasters. The robustness of this type of construction is based on their continuity and ductility. The limiting factor in the application of this type of structures is limited possibility of precise numerical analysis of the load-bearing capacity for different loading cases, or the necessity of laboratory testing of physical models in order to perceive the behavior of the structure. Ferrocement is noncombustible material that has adequate fire resistance. However, during the fire action the degradation of mechanical properties of ferrocement load bearing elements, that are not part of the composite assembly, is only 30 minutes, which represents a small fire resistance. Satisfactory values of mechanical resistance to fire can be achieved within the composite and sandwich structures.

² Since recently, ferrocement is applied in Serbia in a modest extent (Milinković, 2009). The first technical recommendation for ferrocement in Serbia was published by Federal institution for standardization in 2002.

³ Ferrocement is made of a thin layer of cement mortar within which there is a high percentage of reinforcement, in form of multiple layers of continuous light network, which is made of closely spaced wires of relatively small diameter. The thickness of the elements is 1-3 cm, which is practically impossible in the case of classical reinforced concrete.

⁴ Production of ferrocement elements is challenging in terms of expenditure of labor, which limits the application of this material in countries with high labour cost.

Aspects of comfort

Ferrocement surface elements, since they are very thin, have low thermal resistance, so it is necessary to incorporate additional layers of thermal insulation in the area of the building envelope. Monolithic ferrocement structures are favorable in terms of air sealing, minimizing the air leak. In order to ensure an adequate heat capacity and thermal inertia of the entire assembly, it is necessary to incorporate additional layers of materials with appropriate thermal characteristics. Ferrocement has a low permeability for water steam and gases and does not participate in the processes of humidity regulation. When it comes to the internal air quality, ferrocement can be considered as harmless material, practically with no emission of harmful gases, particles and microfibers. Due to the low air permeability of ferrocement, the possibility of air changes through the building envelope is reduced, which increases the risk for moistening the elements and mold growth. Single-layer ferrocement surface elements, given the small thickness, are characterized by high sound conductivity, i.e., a small insulating power. Studies have shown that the sound reduction index of ferrocement thin walls increases with the addition of stiffeners and that it further rises with addition of insulating filling⁵. When it comes to the impact sound insulation, ferrocement ceiling constructions imply additional floor layers, which reduce impact sound trans-mission. Satisfactory sound insulation properties must be ensured through the installation of floating floors which reduce vibration within ceiling element, in addition, through the installation of suspended ceilings, as well as through the adequate design of structural elements' connection details in order to avoid sound leakage, that is, the occurrence of sound bridges. Ferrocement structures and elements are suitable when it comes to the realization of assemblies in accordance with the desired acoustic qualities, since they can be freely shaped. The sound field phenomena: reverberation time, diffusivity and early reflections can be managed by designing the texture and shape of ferrocement elements.

Electromagnetic field levels

Ferrocement structural elements, especially those with a high percentage of reinforcement, can create unhealthy environment for users. Ferrocement surface elements can enhance the effect of electromagnetic radiation in the indoor environment, due to reflections and the superposition of electromagnetic waves.

⁵ In the case of ferrocement partition made of two layers of ferrocement, between which there is a layer of air or porous absorbent material, the insulating power of partitions is better (for 2db and more) than in the case of solid wall of the same thickness ("Award-winning Project: Treelodge@Punggol", 2012).

Quality of spatial organization

Ferrocement monolithic structures are suitable from the aspect of their adjustment to the form of space which is required by the social action (Figure 1). Structural elements can be shaped in such way that they occupy only the cross-sectional areas of social spaces, with the aim of creating "the most efficient structure for a given system of space" (Alexander, Ishikawa and Silverstein, 1977). The building structure can be optimized in accordance with the people and their needs (Kiesler, 1939).

Figure 1: Javier Senosiain, The organic house, Naucalpan, Mexico, 1985. The preliminary sketch and the interior. http://www.arquitecturaorganica.com/casa-orgaacutenica.html

Space adaptability

By adequate shaping of ferrocement elements (beam elements of complex crosssection) or the whole structures (ribbed ferrocement shell) and by the formation of composite assemblies made of ferrocement and other construction materials (classical concrete and steel), a long span load bearing structures can be constructed, i.e., the higher net usable surface area can be achieved. This increases the possibility of space functioning for multi-purposes. In addition, important characteristic of ferrocement structures, when it comes to the space adaptability, is their durability and possibility of easy repair and maintenance, based on the application of readily available materials. But, in the case of space reconstruction, ferrocement elements can be limiting, because of the reduced potential for subsequent formation of openings within elements and because of difficulties in achieving the connection between new structural elements and existing structure. However, compared to the much thicker reinforced concrete elements, ferrocement elements can be considered favorable in terms of space adaptability.

Ease of building maintenance

Ferrocement structures enable effective maintenance over the expected service life, with a minimum investment of human, material and financial resources, provided that they are designed in accordance with specific conditions in the macro and

micro environment and properly built. Given the durability of ferrocement, i.e., taking into account that first ferrocement structures, built in mid-nineteenth century, are still in good condition (Pemberton, 1998), it is necessary to avoid the assemblies in which ferrocement is combined with less durable materials if the separation of individual materials is prevented.

Visual aspects

The ferrocement, as a composite material whose structure, texture and colour are designed and thus the degree of reflection, as well as the ferrocement structures which allow a high degree of freedom in their shaping and in shaping of openings with the aim of light manipulation (Figure 1), can contribute the quality of light in the interior space, that is, affect the level of brightness, propagation of light and light intensity and colour. Ferrocement in its "natural" color ("non-color"), which is determined by the color of cement and aggregate whose base is gray, is assessed as "cold" from a lay person (Rutkin, 2005). On the other hand, if it is made in warm colors it can be perceived significantly different, primarily as "warm" (Benz and Rambow, 2008). Ferrocement structures can take "soft, non-aggressive forms, without sharp edges" that "cause pleasantness of touch and stimulate the subconscious to repeat the same experience" (Božović-Stamenović, 1997). Ferrocement, in the visual sense, can be experienced as a concrete with fine structure or as a rough mortar. In this context, in Europe ferrocement is associated with the mass usage of concrete or mortar within the buildings of different purposes, making it a "neutral" material, suitable for composing the spaces of different associative values. Ubiquity, standardicity, uniformity, availability, simplicity, steadiness, dynamism, freedom...ferrocement can "hide" many ideological backgrounds, i.e., take many meanings (Nenadović, 2014).

CONCLUSIONS

The paper analysed the ferrocement architectural structures on the basis of indicators of social well-being for users during the use phase of the building. The ferrocement structures were analyzed as subsystem of the building, whose behavior is directed towards the aim of system – building - ecological quality. The analysis pointed to the advantages and disadvantages of ferrocement structures from the aspect of social well-being, that is, to the necessity of a complex and systemic approach to quality of building structures, in function of achieving the ecological quality of buildings. In this context, it is necessary to further develop the legal framework for planning and construction, as well as to further improve the education of designers, by including the complex and systemic assessment of impact of buildings and their subsystems, within the general framework for the assessment of ecological quality.

REFERENCES

Alexander, C., S. Ishikawa, and M. Silverstein. 1977. *A Pattern Language: Towns, Buildings, Construction*. Oxford University Press.

"Award-winning Project: Treelodge@Punggol." 2012. *The Singapore Engineer*, february 2012: 16-20.

Benz, I., and R. Rambow. 2008. "Architects' and Non-Architects' Perception of Exposed Concrete as a Building Material". Poster presented at the XXIX International Congress of Psychology, ICC, Berlin.

Božović-Stamenović, R. 1997. *O prostorima lečenja – centri dnevne nege*. Beograd: Zadužbina Andrejević.

IFS Committees 10. 2001. Ferrocement Model Code: Building Code Recommendations for Ferrocement (IFS 10-01). Thailand: International Ferrocement Society.

Kandaswamy, S., and A. Ramachandraiah. 2002. "Sound Transmission Performance on Ferrocement Panels." *Journal of Ferrocement* 32, no.1: 59-67.

Kiesler, F. 1939. "On Correalism and Biotechnique: A Definition and Test of a New Approach to Building Design." *Architectural Record* 86, (September): 60–75.

Milinković, M. 2009. "Expirience with prefabricated ferrocement panels for the construction of ferrocement halls", In *Ferro-9 - Proceeding of the 9th International Symposium on Ferrocement and Thin Reinforced Cement Composites: Green Technology for Housing and Infrastructure Construction*, edited by A. Djausal, F. Alami, and A. E. Naaman, 11-19. Bandar Lampung: The University of Lampung.

Nenadović, A. 2014. Integrisano projektovanje konstruktivnih sistema zasnovanih na primeni ferocementa. Doktorska disertacija. Beograd: Univerzitet u Beogradu.

Pemberton, J.M. 1998. "Ferrocement – An insight and review – So what is new." In *Ferrocement 6, Lambot Symposium: Proceedings of the Sixth International Symposium on Ferrocement*, edited by A. E. Naaman, 75-83. Ann Arbor: University of Michigan.

Rutkin, K. 2005. User Preference Of Interior Design Elements In Hotel Lobby Spaces. Master Thesis. University of Florida.

Working Group for Sustainable Construction. 2001. "Competitiveness of the Construction Industry: An agenda for sustainable construction in Europe", A report drawn up by the Working Group for Sustainable Construction with participants from the European Commission, Member States and Industry, Brussels. Accessed February 8, 2008. http://www.gci-uicp.eu/Documents/Reports/Sust-con-final.pdf