CITIES 3.0
smart sustainable integrative

Strategies, Concepts and Technologies
For Planning the Urban Future

www.corp.at

22 - 25 April 2009
Centre de Disseny de Sitges
Catalonia/Spain

PROCEEDINGS
TAGUNGSBAND
REAL CORP 2009: CITIES 3.0 – Smart, Sustainable, Integrative.

Proceedings of
14th International Conference on Urban Planning, Regional Development and Information Society

Beiträge zur
14. internationalen Konferenz zu Stadtplanung, Regionalentwicklung und Informationsgesellschaft

Edited by
Manfred SCHRENK, Vasily V. POPOVICH, Dirk ENGELKE, Pietro ELISEI
Schwechat, 2009

Im Selbstverlag des Vereins
CORP – Competence Center of Urban and Regional Planning
Kompetenzzentrum für Stadtplanung und Regionalentwicklung
Lerchergasse 4, A-2320 Schwechat-Rannersdorf
office@corp.at, http://www.corp.at
TEAM

Manfred SCHRENK
Clemens BEYER
Christian EIZINGER
Gert DELLE KARTH

Stephanie RÜSCH
Kathi MITTERER
Jon Alejandro PUEYO
Katja ROSNER
Table of contents – Inhaltsverzeichnis:

Advanced analysis of spatial multi-functionality to determine regional potentials for renewable energies .. 15
Ulrike Wissen, Adrienne Grêt-Regamey ... 15

Are landmarks essential to the city – its development? ... 23
Anthony Clerici, Izbela Mironowicz... 23

Autostereoscopic Visualization of Landscape - a Research Project .. 33
Dirk Stendel .. 33

Climate Change and the Resilience of Megacities in South-East-Asia Creating Risk-Based Climate Change Information for Ho Chi Minh City’s Settlements ... 45
Harry Storch, Nigel Downes, Kiduk Moon... 45

Competence and performance .. 55
Konstanze Noack .. 55

Concentration of knowledge-based professions in the German city-system ... 59
Anna Grove ... 59

Cross-border Region Graz-Maribor: Challenges and Potentials of Integration Processes................... 73
Kaja Pogačar, Metka Sitar .. 73

Die Verschmelzung von realer und virtueller Umgebung in der City3.0 ... 83
Arne Siegl, Ingo Wietzel .. 83

Energy Efficiency and Solar Renewable Energy through Minimalism ... 97
Dragana Vasilksi, Svetlana Stevovici .. 97

Entwicklungsdynamiken und Handlungsoptionen von Städten im Strukturwandel ... 105
Heike Liebmann .. 105

Environmental Impact Assessment, a tool for Sustainable City Management ... 111
Sanhita Bandyopadhyay, Piyali Bandyopadhyay, Papiya Bandyopadhyay Raut ... 111

Erfolgsfaktoren für eine innovative Positionierung von Städten und Regionen ... 127
Kirsten Mangels .. 127

Explore the spatial equity of urban public facility allocation based on sustainable development viewpoint .. 137
Chin-Hsien Liao, Chang Hsueh-Sheng, Ko-Wan Tsou .. 137

Exploring Crime Hotspots: Geospatial Analysis and 3D Mapping ... 147
Markus Wolf, Hartmut Asche .. 147

Flächenmanagement unter Schrumpfungsbedingungen in der Region Halle-Leipzig ... 157
Anja Brandl, Christian Strauß, Barbara Warner .. 157

GIS-based evaluation of public facility provision to achieve improved governance and equitable service delivery .. 167
Chéri Green, Ken Breetezke, Gerbrand Mans .. 167

Green Spaces 3.0 – CAD-Fachapplikationen als wissensbasierte Werkzeuge für die Landschaftsarchitektur am Beispiel der Bepflanzungsplanung ... 177
Marcel Heins, Wolfram Kircher, Einar Kretzler, Christian Schultze .. 177

Green Spaces 3.0 – Qualitätsmanagement für die nachhaltige Sicherung der Funktionsfähigkeit von Grünflächen in urbanen Räumen ... 187

Marcel Heins, Matthias Pietsch .. 187

Green Spaces 3.0 – Wissensmanagement zur Planung, Bereitstellung und Bewirtschaftung urbaner Vegetation durch Kommunikations- und Informationstechnologien ... 197
Marcel Heins, Wolfram Kircher .. 197

‘Green Urban Catalyst’: An Ex Post Evaluation of Sustainability Practices ... 207
Maria Cerreta, Ilaria Salzano .. 207

HOUPLA – Holistic Urban Planning in the Bizkaia Technology Park ... 223
Borja Izola, Ignace Revilla .. 223

Implementation of Sustainable Urban Transport Measures and their Political Dimension 233
Oliver Roeder, Tina Uhlmann .. 233

Indicators for Socially Sustainable Park Use – Results from a Case Study ... 243
Frank O. Ostermann .. 243

Infrastructure Acquisition and 3D Virtual Integration .. 253
Gerd Hesina, Bernd Leitner, Stephan Mantler, Friedrich Brimmer .. 253

Innerstädtisches Entwerfen in der City3.0 .. 261
Henning Stepper, Ingo Wietzel .. 261
Integration of Vessel Traffic Control Systems and Geographical Information Systems
Vasily Popovich, Christophe Clarandum, Vasily Osipov, Cyril Ray, Tianzhen Wang, Dmitry Berbenev
271

Land uses allocation as key to city’s environmental improvement
Ioannis. Tsouderos, Despina Dimelli
285

Landesweite 3D-Stadtmodelle im Internet auf Basis offener Standards des Open Geospatial Consortiums (OGC) - das Beispiel Nordrhein-Westfalen 3D
Robert Kulawik, Arne Schilling, Alexander Zipf
293

Langfristige Bürger/-innenbeteiligung - ein Beitrag zur nachhaltigen Stadtentwicklung
Franz Brunner
303

Liveable City TP. Ho Chi Minh - Adaptation as response to impacts of climate change
Ronald Eckert, Ulrike Schinkl
313

Local Developmental State? State-led Entrepreneurial City? Deconstructing Shenzhen’s Pathway of Local Growth Political Economy Pressed by Pearl River Delta Intercity Competition
Cassidy I-Chih Lan
325

Mapping people? – The measurement of physiological data in city areas and the potential benefit for urban planning
Peter Zeile, Stefen Hößken, Georgios Papastefanou
341

Methodology of target and requirements management for complex systems concerning the application field of an energy-efficient city
Karsten Rexroth, Thilo Brüggemann, Petra von Both
353

Mofist – Mobile field survey tool for conversion areas
Inga Scheler, Hans Hagen
361

Monitoring und Visualisierung von Carbon Footprints im urbanen Raum
Sebastian Petsch, Luc Heischbourg, Kerstin Müller, Subhrabij Guhathakurta, Hans Hagen
371

Nachhaltige Entwicklung von Megacities: Energieeffiziente Strukturen für die Region Shanghai am Beispiel des Distrikts Fengxian
J. Alexander Schmidt, Jörg Schönharting, Hannah Baltes, Sabine Drobek, Marco Schuhmann
381

New Urbanism in Historic City Centers? The Glocalization of Vienna’s Historic City Center as an Art and Cultural Hub
Gerhard Hatz
391

Patch – Switch – Stratus. An insight into infrastructural spatial mediation strategies in contemporary Lisbon metropolis
João Rafael Santos
403

Places on the Net
Ileana Apostol, Panayiotis Antoniadis, Tridib Banerjee
413

Plants in Architecture and their Integrative Role in Energy Efficacy
Svetlana Stevovic, Dragana Vasilksi
423

Public Participation and Urban Planning supported by OGC Web Services
Joachim Benner, Thomas Eichhorn, Andreas Geiger, Karl-Heinz Häfele, Kai-Uwe Krause
431

Public Transport Systems Development for Urban Regeneration – Evidence from the City of Linz/Austria
Roman Klementschitz, Juliane Stark
439

Railway Stations of the Future – Services supporting Intermodal Travelling and Promising Strategies for their Development
Juliane Stark, Tina Uhlmann
449

Simulation städtischer und touristischer Flächenexpansionen als Grundlage für eine nachhaltige Entwicklung – Fernerkundung und GIS als Planungsinstrumente
Simone Naumann
459

Strategische räumliche Ziele für den Planungsprozess unter Schrumpfungsbedingungen
Christian Strauß
469

Study of the exploration of fire occurrence spatial characteristics and impact factors – A Case Study of Tainan City
Hsueh-Sheng Chang
477

The Eco-efficiency Assessments of Hazards prevention in Urban Parks of Taiwan
Hui-Wen Huang, Hao-Hsuan Huang, Hsueh-Sheng Chang
483

The End of Master Plan: New Collage Cities of Future
Anand Wadwekar, Hidetsugu Kobayashi
489

The New Urban Acupuncture: Intermodal Nodes between Theory and Practice
Aleksandra Stupar, Vladimir Savic
499

The riddled city – where demographic change adds to the woes of urban sprawl
Stefan Fina, Stefan Siedentop
507
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The role of the informal sector in contributing to the urban landscape in Yogyakarta – Indonesia concerning on the urban heat island issue</td>
<td>519</td>
</tr>
<tr>
<td>Suparwoko Nitisudarmo</td>
<td>519</td>
</tr>
<tr>
<td>The Social Impact of Urban Waterfront Landscapes: Malaysian Perspectives</td>
<td>529</td>
</tr>
<tr>
<td>Salina Mohamed Ali, Abdul Hadi Nawawi</td>
<td>529</td>
</tr>
<tr>
<td>The study of green space ecological benefits of Chiayi City</td>
<td>535</td>
</tr>
<tr>
<td>Hao-Hsuan Huang, Hui-Wen Huang, Hsueh-Sheng Chang</td>
<td>535</td>
</tr>
<tr>
<td>The Use of Urban Planning Consultancy as a Communication Tool for Cities</td>
<td>541</td>
</tr>
<tr>
<td>Cinthya Uribe-Sandoval, David C. Prosperi</td>
<td>541</td>
</tr>
<tr>
<td>Universität in der Stadt - Räume für die Wissensgesellschaft</td>
<td>551</td>
</tr>
<tr>
<td>Kerstin Gothe</td>
<td>551</td>
</tr>
<tr>
<td>Urban Crafting: Making a Connected City</td>
<td>561</td>
</tr>
<tr>
<td>Reena Tiwari</td>
<td>561</td>
</tr>
<tr>
<td>Urban simulation Using Neural Networks and Cellular Automata for Land Use Planning</td>
<td>571</td>
</tr>
<tr>
<td>Hamid Kiavvarz Moghaddam, Farhad Samadzadegan</td>
<td>571</td>
</tr>
<tr>
<td>Walkable Urban Green Spaces: Health Impact Assessment in Amadora, Portugal</td>
<td>579</td>
</tr>
<tr>
<td>Paula Santana, Rita Santos, Cláudia Costa</td>
<td>579</td>
</tr>
<tr>
<td>Adding Value on Geospatial Data Infrastructure with CommunityViz Future Growth Scenarios of Local Communities in Suburb of Warsaw, Poland</td>
<td>589</td>
</tr>
<tr>
<td>Pawel Decewicz</td>
<td>589</td>
</tr>
<tr>
<td>AIRCLIP – Airports and Climate Preservation</td>
<td>591</td>
</tr>
<tr>
<td>Manfred Schrenk, Stephanie Rüsch, Gregor Witschko, Andor Farkas, Christian Eizinger</td>
<td>591</td>
</tr>
<tr>
<td>An analysis of the Hungarian major cities and their territories and their opportunities of development</td>
<td>597</td>
</tr>
<tr>
<td>János Rechnitzer, Bálint Fülep</td>
<td>597</td>
</tr>
<tr>
<td>Aspern, Vienna’s Urban Lakeside</td>
<td>603</td>
</tr>
<tr>
<td>Claudia Nutz, Kurt Hofstetter</td>
<td>603</td>
</tr>
<tr>
<td>Biotope Mapping in Korea: History of biotope mapping and consideration of a new method</td>
<td>613</td>
</tr>
<tr>
<td>Soo-Young Moon, Hyun-Soo Kim, Yeon-Mee Kim, So-Yeon Bac</td>
<td>613</td>
</tr>
<tr>
<td>Bus Stop 3.0 – Multifunctional Centers for Regional Development</td>
<td>619</td>
</tr>
<tr>
<td>Manfred Schrenk, Josef Benedikt, Clemens Beyer, Christian Eizinginger</td>
<td>619</td>
</tr>
<tr>
<td>Cadastral Management System with utilities and facilities. A Case study of Model Town Lahore</td>
<td>625</td>
</tr>
<tr>
<td>Muhammad Nawaz Mian</td>
<td>625</td>
</tr>
<tr>
<td>Can we capture the imaginary dimension of cities?</td>
<td>627</td>
</tr>
<tr>
<td>Olivier Lefebvre</td>
<td>627</td>
</tr>
<tr>
<td>CentroleMAP - Information Infrastructure for a dynamic cross-border region in the heart of Europe</td>
<td>633</td>
</tr>
<tr>
<td>Manfred Schrenk, Clemens Beyer, Walter Pozarek</td>
<td>633</td>
</tr>
<tr>
<td>Concept of appropriate economic environmental modelling for sustainable development</td>
<td>641</td>
</tr>
<tr>
<td>Papiya Bandyopadhyaya Raut, Sandeep Kumar Raut</td>
<td>641</td>
</tr>
<tr>
<td>‘Cultures of Legibility’ As a Complementary Approach to Site Planning For Southeast Asian Cities: A Case Study of Kuala Lumpur</td>
<td>643</td>
</tr>
<tr>
<td>Dazilah A. Samad</td>
<td>643</td>
</tr>
<tr>
<td>Delhi – Towards a Green City</td>
<td>655</td>
</tr>
<tr>
<td>Bijendra K. Jain</td>
<td>655</td>
</tr>
<tr>
<td>Demographic challenges for urban mobility and public space</td>
<td>667</td>
</tr>
<tr>
<td>Herbert Bartik, Siegrun Herzog</td>
<td>667</td>
</tr>
<tr>
<td>Der Punkt als Netzwerk. Anmerkungen zu raumstrukturellen Bewertungsmethoden</td>
<td>671</td>
</tr>
<tr>
<td>Josef Benedikt</td>
<td>671</td>
</tr>
<tr>
<td>Digital Guidance & Information System in Schwechat, Austria</td>
<td>675</td>
</tr>
<tr>
<td>Manfred Merten</td>
<td>675</td>
</tr>
<tr>
<td>Evaluation of sustainable regional land use</td>
<td>681</td>
</tr>
<tr>
<td>Vladimíra Šilhánková, Michael Pondelíček</td>
<td>681</td>
</tr>
<tr>
<td>Exploring the people’s perception of urban public parks in Tehran</td>
<td>687</td>
</tr>
<tr>
<td>Zohreh A. Daneshpour, Asrin Mahmooodpour</td>
<td>687</td>
</tr>
<tr>
<td>Finding new patterns to design sustainable cities by use of traditional urban patterns</td>
<td>693</td>
</tr>
<tr>
<td>Anahita Mahmoudi, Kamyar Fanaei</td>
<td>693</td>
</tr>
<tr>
<td>Geological data infrastructure for spatial planning in Poland</td>
<td>705</td>
</tr>
<tr>
<td>Jacek Kocyla</td>
<td>705</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Some Problems with modern Management and Planning Systems: The technology-environment trade-off for the aviation.</td>
<td>709</td>
</tr>
<tr>
<td>Hauptgebäude einer Kulturhauptstadt</td>
<td>711</td>
</tr>
<tr>
<td>Andreas Treusch, Nadja Sailer</td>
<td>711</td>
</tr>
<tr>
<td>HUB 53/12 – das Logistiknetz Güstrow – Prignitz – Ruppin</td>
<td>717</td>
</tr>
<tr>
<td>Jochen Richard, Hilde Richter-Richard</td>
<td>717</td>
</tr>
<tr>
<td>Improving Slum Conditions with Public Private Partnerships</td>
<td>723</td>
</tr>
<tr>
<td>Tina Chang</td>
<td>723</td>
</tr>
<tr>
<td>Innovative Stadtplanung als Prozessgestaltung – am Beispiel Musterprojekt „Generationen_wohnen am Mühlgrund“, Sabine Gretnert</td>
<td>729</td>
</tr>
<tr>
<td>Innovative web-based tools for participatory planning</td>
<td>731</td>
</tr>
<tr>
<td>Stefano Magauda, Giuseppe De Marco, Flavio Camerata</td>
<td>731</td>
</tr>
<tr>
<td>Kommunales Handeln beim Flächenmanagement</td>
<td>737</td>
</tr>
<tr>
<td>Anja Brandl</td>
<td>737</td>
</tr>
<tr>
<td>Manage and planning sustainable city case study Tehran metropolitan</td>
<td>743</td>
</tr>
<tr>
<td>Farzaneh Sansapour</td>
<td>743</td>
</tr>
<tr>
<td>Mapping Biotope and Sociotope for Green Infrastructure Planning in Urban Areas</td>
<td>745</td>
</tr>
<tr>
<td>Wan-yu Shih, John Handley, Iain White</td>
<td>745</td>
</tr>
<tr>
<td>Mapping urban open space and the compact city – research methodology</td>
<td>751</td>
</tr>
<tr>
<td>Tomasz Bradecki</td>
<td>751</td>
</tr>
<tr>
<td>Mark Changes for Sustainable Development through National Urban Information System (NUIS)</td>
<td>755</td>
</tr>
<tr>
<td>Sandeep Kumar Raut, Jay B. Kshirsagar</td>
<td>755</td>
</tr>
<tr>
<td>Mehrwert Region für Wärme und Strom aus erneuerbaren Energien</td>
<td>757</td>
</tr>
<tr>
<td>Dagmar Everding</td>
<td>757</td>
</tr>
<tr>
<td>New Belgrade – between yesterday and tomorrow</td>
<td>765</td>
</tr>
<tr>
<td>Lidija Jovanovic Nenadovic</td>
<td>765</td>
</tr>
<tr>
<td>New residential areas in Bucharest Metropolitan Area – location, type and characteristics</td>
<td>767</td>
</tr>
<tr>
<td>Maria Patroescu, Mihai Nita, Cristian Ioja, Gabriel Vanau</td>
<td>767</td>
</tr>
<tr>
<td>OpenStreetMap.org - Community game or real geo-data? And the role of data donations</td>
<td>773</td>
</tr>
<tr>
<td>Wolfgang W. Wasserburger</td>
<td>773</td>
</tr>
<tr>
<td>Participation of citizens as potential endusers in the innovation process for assistive technologies</td>
<td>779</td>
</tr>
<tr>
<td>Walter Hlaušek, Wolfgang L. Zagler, Paul Panek</td>
<td>779</td>
</tr>
<tr>
<td>Participatory planning for urban regeneration – the Polish experience</td>
<td>785</td>
</tr>
<tr>
<td>Piotr Lorenens</td>
<td>785</td>
</tr>
<tr>
<td>Rebranding Lagos through Regeneration</td>
<td>787</td>
</tr>
<tr>
<td>Wale Fadare, Leke Oduwaye</td>
<td>787</td>
</tr>
<tr>
<td>Re-engineering of planning process with emphasis on foresight approach</td>
<td>799</td>
</tr>
<tr>
<td>Mohamad Reza Puormohammadi, Karim Hosainzade Dalir, Nader Zali</td>
<td>799</td>
</tr>
<tr>
<td>Smart Cities/Smart People – Guiding – Ideas</td>
<td>809</td>
</tr>
<tr>
<td>Manuel Da Costa Lobo</td>
<td>809</td>
</tr>
<tr>
<td>Smart technologies for cultural landscape and sustainable development</td>
<td>819</td>
</tr>
<tr>
<td>Agata Lo Tauro</td>
<td>819</td>
</tr>
<tr>
<td>Socially Sustainable Development: Planning Empowerment Among the Bedouin in Israel</td>
<td>825</td>
</tr>
<tr>
<td>Avinoam Meir</td>
<td>825</td>
</tr>
<tr>
<td>Some Problems with modern Management and Planning Systems: The technology-environment trade-off for the aviation industry</td>
<td>835</td>
</tr>
<tr>
<td>Philip Kimmet</td>
<td>835</td>
</tr>
<tr>
<td>Strategien integrativer stadtrregionaler Entwicklung unter Wachstums- und Schrumpfungsbedingungen</td>
<td>837</td>
</tr>
<tr>
<td>Isolde Roch; Haiqiao Tan</td>
<td>837</td>
</tr>
<tr>
<td>Strategies and good practice for sustainable and liveable cities of tomorrow</td>
<td>853</td>
</tr>
<tr>
<td>Isabela Velázquez, Carlos Verdaguer, Ernst Lung, Uwe Schubert, Franz Skala</td>
<td>853</td>
</tr>
<tr>
<td>SUME – Sustainable Urban Metabolism for Europe</td>
<td>861</td>
</tr>
<tr>
<td>Barbara Bory, Christof Schremmer</td>
<td>861</td>
</tr>
<tr>
<td>Sustainable development at the city-region level: a broad analysis of the Porto Metropolitan Area</td>
<td>867</td>
</tr>
<tr>
<td>Nuno Quental</td>
<td>867</td>
</tr>
</tbody>
</table>
Terrorist Threat: Human Factor ...869
Vasily Popovich, Manfred Schrenk, Vasily Osipov, Filipp Galyano ...869

The City Planning Cadastre System of Moscow as a tool for sustainable urban development........................885
Sergey Melnichenko; Konstantin Kuaznetsov...885

The ecological footprint – indicator for analyzing the environmental impact of residential surfaces in metropolitan area. Case study: Bucharest Metropolitan Area ...887
Maria Patroescu, Mihai Nita, Cristian Ioja, Gabriel Vanau ...887

The green-cover network for sustainable environment – case study of Chennai city...893
Meenatchi Sundaram...893

The importance of active public communication - Settlement systems and land use patterns seen from a disaster perspective ...895
Christoph Aubrecht, Mario Köstl, Markus Knoflacher, Klaus Steinnocher ...895

The Libraries of Serbia on their Way to the City 3.0 ...901
Vesna Župan ...901

The New Emscher Valley – Reshaping an urban Landscape creates regional Identity ...907
Frank Bothmann, Sabine Auer ...907

Transition regions: green innovation and economic development...911
Philip Cooke...911

Ubiquitous Eco-City Planning in Korea. A Project for the Realization of Ecological City Planning and Ubiquitous Network Society ...925
Yeon Mee Kim, Hyun Soo Kim, Soo Young Moon, So-Yeon Bae...925

Urban and natural transformations of agricultural lands in Moscow oblast...931
Boris Feldman, Alexander Antonov, Tatyana Antonova...931

Urban Design Process Model with “The Urban User” Participation ...939
Tolga Uzun, Altay Çolak, Ayberk Nuri Berkman, Erkan Güneş...939

Urban development and planning in Iran...951
Ebrahim Jamshidzadeh...951

Urban Planning and Health - Obesogenic environments...953
Paula Santana, Rita Santos, Claudia Costa...953

Urban Sustainability Concept of Conservation Strategies in Turkey ...955
Derya Altunbas...955

Urbanisation and the incidence of urban heat island implications for climate change and global warming ...959
Oluwafemi Ayodeji...959

Use of GIS in ecological resource sections of the scheme of spatial planning...967
Badmaeva Tatiana...967

Water City ...969
Matthew Bradbury ...969

Ways2go – R&D funding program as an instrument to stimulate mobility technologies for the cities of the future ...971
Walter Waser...971

Belize Caribbean Riviera - sustainable resort of the future ...975
Alexander Piletsky, Carlos Chanduví-Suárez, Mikhail Moshnogorskiy, Manfred Schrenk...975

Das Innovationsprogramm der Stadt Schwechat: Von der Verkehrsdrehscheibe zur Wissensdrehscheibe ...985
Franz Kucharowits, Manfred Merten, Helmut Paugger, Manfred Schrenk...985
1 ABSTRACT

The intermodal nodes, as important interchange areas of contemporary cities, represent one of the most vibrant and challenging elements of the current urban transformations. Frequently considered as initiators or generators of further urban and regional connectivity, accessibility and development, they are excellent experimental polygons for new planning strategies. Thus, the intermodal areas, originally perceived as marginal zones and used as the basic transportation support, upgrade their mono-functional background introducing the globally recognizable set of activities.

The main idea of this process is to create an improved urban system, based upon latest technologies and proclaimed imperatives of urban efficiency, competitiveness and sustainability. Therefore, the purpose of this paper is to present and analyze context, content and implications of intermodality and the transformations caused by this concept. Obviously, the structural, social and economic interchange have been achieved in numerous cases, but a total integration, real sustainability and an acceptable mode of applied technology still have to be confirmed in the future.

2 INTRODUCTION

The urban world of the 21st century is composed of numerous nodes, streams and webs, which create a new landscape of globalization and impose different logic of space and time perception. Therefore, the urban infrastructure is updated, its networks are continuously multiplied and various spaces of (inter)connections are folded in trendy architectural envelopes.

Following the general idea of higher efficiency, the global movement of flows shapes a different configuration which, nowadays, connects new urban focuses: airport/highway/railway – parking place/subway station – office/apartment buildings. Evidently, the introduction of new urban/global infrastructure systems is a necessity, but their harmonization with the inherited urban context has to fulfill the needs of all consumers. The higher urban connectivity, which could be attained by numerous traffic and information systems, enables the communication on every spatial level and scale. As a result, the systems of public transportation, systems of business/tourist flows and systems for information interchange (telecommunication networks) open the numerous possibilities for urban integration.

Usually, the first step of the global initiation is creation of new city gates (airports, railway buildings) and establishment of economic and information contact zones. They become the main connection points between different kinds of communication and transform themselves into the complex mega-structures, as the most vital organs of global cities. Their organization and form transmit numerous messages, glorifying the power of modern technologies, expressing the national dignity, reflecting the importance of a city in the world hierarchy or representing the symbols of a new urban regeneration. However, all these nodes function on several scales – integrating various activities, actors and spaces, and promoting the concept of intermodality.

3 THE IDEA AND ROLE OF INTERMODALITY

The idea of intermodality derives its logic from the complex traffic systems and represents one of the main pivots of the contemporary planning practice. Generating an impressive architectural program, it directs design and organization of sensitive urban areas playing an important role in modern cities. However, this term is frequently related to the traffic nodes – terminals, even though it could be embedded and/or applied in various categories of urban systems and on different levels and scales of design process.

In general, intermodality is a characteristic of a transport system which combines/uses at least two different transportation modes. These modes should be integrated, increasing the passenger mobility in a door-to-door transport chain. One of the main goals of modern intermodal passenger transport is to boost use of public transportation and to reduce the reliance on the private cars. At the same time, it should respond to numerous...
(and often contradictory) demands in order to enable social and economic development, environmental protection, efficiency, safety and security, accessibility and – the freedom of mobility for any citizen.

Unfortunately, even though the concept of intermodality reflects numerous interactions, which exist in a dynamic contemporary urban system, it sometimes collides with environmental requirements or only declaratively accepts demands and recommendations given by local communities, experts or authorities. However, the basic principles of intermodality could be used as an active tool for urban planning and design, which could synchronize an inherited city space, multiplied needs and scales, as well as the latest technological achievements.

4 THEMES AND CHALLENGES

On our way to the improved passenger transport, there are numerous obstacles. According to the Eurostat data (EU-27, 2006) 72.7% of Europeans prefer to use their cars for everyday activities and in the new member states these figures look even more discouraging. Furthermore, various modes of transport (especially private car travel) represent the major consumers of non-renewable energy, which has a negative impact both on local and global level. Therefore, the concept of intermodal transportation was proposed by the European Commission as an alternative to the previous condition and as a possibility for a seamless travel which comprises all modes of transport, new technologies, a reliable knowledge base and well-balanced management. In spite of obvious benefits, which include all-inclusive, cheaper, comfortable, greener and safer travels, it is still necessary to coordinate local, regional and global level. As a result, it would be possible to unify standardization, regulation, ticketing schemes, booking and services across Europe and to emphasize qualities of intermodal networking.

The European Union initiated a number of programs and projects focused on various aspects of intermodal passengers travel in Europe. Obviously, this concept has been prioritized and documents such as the White Paper of the European Commission (“European transport policy for 2010: time to decide”, 2001) or studies (for ex. “Towards passenger intermodality in the EU”, 2004) certainly support and alleviate its implementation. Additionally, it is important to emphasize programs – for example, the funding program Marco Polo (2007-2013), which should encourage shifting of freight transport from the roads to rail, sea and inland waterways, or comprehensive projects like KITE – “A Knowledge Base for Intermodal Passenger Travel in Europe” (2007-2009), which should provide all relevant existing (and future) information and data about passengers intermodality.

One of the very interesting projects is LINK – The European Forum on Intermodal Passenger Travel, also funded by the European Commission (2007), within the 6th Framework Program. The main aim of the Forum is to provide “a platform for exchange, knowledge transfer and the promotion of intermodal solutions” but it also brings together all stakeholders and enables communication between main actors – authorities, associations, operators, users and industry representatives. In addition, the LINK forum presents various case studies, a virtual library and an intermodality glossary which further stimulates knowledge/practice exchange and promotes the idea of intermodal travel.

All these initiatives cover a wide range of themes dealing with different scales and spatial levels, modes of transport, aspects and methodology/tools but it is still early to estimate the real effect of all these impulses. However, one fact cannot be denied – the contemporary city space is changing and the guidelines outlined by the main principles of intermodality will represent a backbone of future urban transformations. Consequently, the intermodal nodes and their networks will become the unavoidable acupunctural points and meridians on a modern urban tissue – influencing our mode and quality of life.

5 INTERMODAL NODES – CHARACTERISTICS

The contemporary intermodal nodes could be classified according to various criteria:

- importance for local, regional and global connectivity
- position in a metropolitan/urban networking
- spatial structure
- functional structure
- mode(s) of transportation
• applied technology
• level of planned/achieved sustainability
• level of integration

In general, intermodal nodes with their traffic networks, complementary activities and surrounding (service) zones could represent:

• local connectors (networking on a metropolitan scale, local service center)
• regional connectors (intersection of several regional transportation networks, inter-metropolitan links, service center on a regional level)
• global connectors (the main intermodal hub of major regional networks, interregional/global service center).

Considering the position and role in a metropolitan intermodal system, it is possible to distinguish two basic types of networking – with hierarchical structure (various levels of importance) or without it (all nodes/elements have equal importance), but frequently these two types are combined. Therefore, intermodal node could represent the main intermodal metropolitan unit, an integral unit of the main intermodal zone, a unit of intermodal network (the same level of importance) or a unit of a merged intermodal metropolitan system (various levels of importance) – Figure 1.

The intermodal nodes have a specific spatial structure shaped by their elaborated program and numerous demands – functional, technological, environmental and socio-economic. The main areas are:

1. Passenger area
 • entrance zone
 • corridors (linear, circular and mixed systems)
 • leisure area /restaurants, shopping, etc./ – circular, linear and network
 • platforms and technical support

2. Border area – architectural envelope
 This area directly and indirectly shapes the urban environment and its identity defining a level of its urban integration and directing its spatial perception (Fig. 2).

3. Public area – interchange and intermodal spaces and processes
 • transit areas (linear, circular, mixed)
 • retention-crossing areas
 • concentration points
 • connectors
The functional structure of intermodal nodes could also be quite diverse, but it usually comprises all the important urban activities stimulated by the globalization process (Fig. 3). However, their distribution could vary – influencing the layout, architectural composition, inter-/intra-urban connections, as well as directing the future urban transformation of a surrounding area.

Since all intermodal nodes combine different types and levels of transportation, it is also necessary to achieve a high level of coordination, efficiency and safety. Therefore, the advanced technological solutions have to be incorporated and applied on several levels, scales and issues:

- planning and design process (methodology and tools – impact analyses, models, scenarios, decision-making, evaluation, monitoring)
- awareness (how, where, when to travel)
- management
- accessibility/movement – people (all groups and categories), vehicles, goods
- e-services (payment, information, survey, GPS)
- new materials and structural systems
- recycling

Evidently, the modern technology has a crucial role in the concept of intermodality because it provides a necessary foundation and support for various activities – from the urban development, land use, taxation and regulation, to the intelligent transport systems and environmental protection.
The intermodal nodes, with their numerous effects on built environment, development/transformation and urban life, obviously represent hypersensitive centres whose excitation or inhibition could cause a number of side effects. For example, urban acupuncture could be conducted in three different ways – as a:

- re-integration (interpolation, controlled transformation, adjustment to the existing urban environment)
- new contextualisation (negation of previous urban condition, redefinition of inherited urban identity, modelling of new landmarks)
- regeneration (structural changes directed by globalization trends, (re)creation of selected themes, areas and focal points).

However, the results of these interventions, as well as their chain-reaction(s) cannot be completely controlled or foreseen. The concept of intermodality, positioned in a contemporary framework, still has to be fully developed and implemented.

6 FROM THEORY TO PRACTICE

The contemporary intermodal nodes integrate separate transport systems and complementary activities, but they also present a new image of our globalized society. The examples of Zentralbahnhof in Berlin, Euralille (Lille) and Sagrera station (Barcelona) clearly reveal this logic, as well as new demands related to attractiveness, spatial and functional comfort.

The main train station in Berlin, Zentralbahnhof represents one of the largest cross-modal train stations in Europe which connects national and international trains, city trains and subway lines. Its position in the centre of the city supports its role as the main mobility hub of Berlin, which connects east and west, north and south. Furthermore, the station is the main terminal of a specific mushroom railway system, which was introduced after 1989 in order to enable transport reunification of the city. The system is nowadays controlled from a central terminal and its supporting units which supervise regional and city lines.

The complex of the two-level terminal covers approximately 70 000 m² (15 000 m² for commercial and restaurant area) which consists of an arched supporting structure and two massive perpendicular structures. The intermodal zone is surrounded by a residential zone (west), university campus (south-east), port terminal (north) and commercial zone (west), which makes the whole area highly defragmented and heterogeneous. Therefore, it is questionable to what extend this multimodal and intermodal node really represents an urban ‘connector’. In spite of its transportation role, implemented technology, monumental scale, variety of spaces, activities and – symbolism, it still represents an urban division and an infrastructural necessity which is not integrated on all levels and scales.

Obviously, the urban acupuncture has stimulated regional and international flows, but it has definitely inhibited fragile networks which should have been established in the urban environment.

Euralille intermodal terminal was built in 1994, as an important connection node of the European transport networks (UK, The Netherlands, Belgium, France). Designed for the last generation of high-speed trains it also includes a new commercial district and represents an interesting intermodal and architectural area. Although a result of local interests and governmental decision, this collage of buildings designed by famous architects (Koolhaas, Nouvel, de Portzampark, etc.) has provided a crossing-point for national, regional and
international lines, which consists of two terminals, commercial center, exhibition space and several public areas. Euralille terminal is organized as a three-level longitudinal platform, but it also follows the tradition of the nineteenth-century terminals. The intermodal ring has a questionable balance of closed and open spaces, while the whole complex has hard borders – towards the urban nucleus (north-east) and the commercial downtown (west), and the soft ones – residential zone and a park area (south). However, in spite of some weaknesses related to its spatial indetermination, Euralille has become an interesting example of a contemporary intermodal spatial area, with a noticeable vibrancy and a specific identity.

Fig. 5. Euralille, Lille (1994) – an intermodal node or a trendy architectural experiment?

Sagrera HST terminal in Barcelona, will be a new central terminal based upon the concept of intemodality. It should enable integration of high speed train system (AVE), existing and new city train lines (RENFE), buses and the Metro, which should all together increase a flow of passengers and transport efficiency. In fact, this node should connect the city to the development axis in Spain and in the rest of Europe. The station will have three subterranean levels and a street level in order to link different transportation modes i.e. levels of integration. However, this node should also connect neighborhoods of La Sagrera and La Verneda, as well as provide connections with the ring-road of Ronda del Mig and some access routes to the city.

The development impulse which this acupunctural multimodal node emits should also effect the transformation of the surrounding area, introducing a set of tertiary activities. Furthermore, a development of a 3.5 km long linear park above one of the main rail lines is planned, which should minimize negative environmental impacts.

Apparently, Sagrera HST station should achieve total connectivity and accessibility on all levels – from local, metropolitan to regional and international. However, we should wait for its completion in order to evaluate its real intermodal and urban qualities and its role in the further development and transformation of this area.

Fig. 6. Sagrera HST Station, Barcelona – a new node of local/metropolitan/regional connectivity. Success or failure?

7 CONCLUSION

The contemporary city generates numerous networks which should increase its total connectivity, facilitate multiscale accessibility and provide time and space contraction. Following the demands of globalization, the concept of intermodality, with its multiplying nodes and webs, represents just one of the tools which should
enable all these aims. Supported by the advanced technology which pervades all areas of our lives, intermodality is about to become one of the global imperatives but its real potential still has to be released and applied.

In the meantime, various planning experiments transform the urban tissue – exciting or inhibiting selected spatial fragments and creating a new landscape which is simultaneously connected and disconnected. Nowadays, everything should be characterized as ‘all-inclusive’, ‘comprehensive’, ‘smart’, ‘intelligent’, ‘friendly’ and preferably with prefixes ‘multi-’, ‘inter-’ or ‘intra-’. Unfortunately, reality frequently clashes with these idealized visions, leaving behind remains of unsuccessful decisions and exaggerated expectations. Therefore, we should be careful with the concept of intermodality, too.

After all, intermodality should not be considered just as an aim, but as an instrument which should improve – and not destroy, all urban values that we have had through centuries.

8 REFERENCES

ABRUZZO, Emil, DUVAL, Alex: 306090 08: Shifting Infrastructures. NY, USA; 2004.
MVRDV/ MAAS, Winy: Five Minutes City. Rotterdam, 2002