Show simple item record

dc.creatorDinkić, Nikola
dc.creatorDžaković, Nikola
dc.creatorJoković, Jugoslav
dc.creatorStoimenov, L.
dc.creatorĐukić, Aleksandra
dc.date.accessioned2019-10-31T11:24:02Z
dc.date.available2019-10-31T11:24:02Z
dc.date.issued2018
dc.identifier.issn2194-5357
dc.identifier.urihttp://raf.arh.bg.ac.rs/handle/123456789/298
dc.description.abstractThe paper considers mining and analyzing data generated by Twitter social network, regarding content classification, language determination and sentiment analysis of tweets. Analyzes are based on geospatial tweets collected in timespan of four months within region Vracar in Belgrade, Serbia. All of collected data is first being preprocessed, filtered and classified by given criteria, by using "Twitter search engine" (TSE) application, that has been upgraded in order to detect tweet language and execute sentiment analysis of the tweets written in English. This type of analysis can be used for determining popularity of city locations of interest and public spaces in general.en
dc.publisherSpringer Verlag
dc.rightsrestrictedAccess
dc.sourceICT innovations 2016: cognitive functions and next generation ICT systems
dc.subjectGeospatial dataen
dc.subjectNatural language processingen
dc.subjectSentiment analysis and opinion miningen
dc.subjectTwitter social networken
dc.titleUsing Sentiment Analysis of Twitter Data for Determining Popularity of City Locationsen
dc.typeconferenceObject
dc.rights.licenseARR
dcterms.abstractСтоименов, Л.; Ђукић, Aлександра; Динкић, Никола; Джаковић, Никола; Јоковић, Југослав;
dc.citation.volume665
dc.citation.spage156
dc.citation.epage164
dc.citation.other665: 156-164
dc.identifier.wos000448429600015
dc.identifier.doi10.1007/978-3-319-68855-8_15
dc.identifier.scopus2-s2.0-85031736676
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record