

3RD INTERNATIONAL ACADEMIC CONFERENCE ON PLACES AND TECHNOLOGIES

EDITORS EVA VANIŠTA LAZAREVIĆ MILENA VUKMIROVIĆ ALEKSANDRA KRSTIĆ-FURUNDŽIĆ AND ALEKSANDRA ĐUKIĆ

3RD INTERNATIONAL ACADEMIC CONFERENCE ON PLACES AND TECHNOLOGIES

EDITORS EVA VANIŠTA LAZAREVIĆ MILENA VUKMIROVIĆ ALEKSANDRA KRSTIĆ-FURUNDŽIĆ AND ALEKSANDRA ĐUKIĆ

PLACES AND TECHNOLOGIES 2016

CONFERENCE PROCEEDINGS OF THE $\mathbf{3}^{\text{RD}}$ international academic conference on places and technologies

EDITORS:

ii

Eva VaništaLazarević, Milena Vukmirović, Aleksandra Krstić-Furundžić, Aleksandra Đukić FOR PUBLISHER: Vladan Đokić PUBLISHER: University of Belgrade – Faculty of Architecture DESIGN: Stanislav Mirković TECHNICAL SUPPORT: Jasna Marićević PLACE AND YEAR: Belgrade 2016 ISBN: 978-86-7924-161-0

ORGANIZERS

MAIN CONFERENCE SUPPORT

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА

ИНЖЕЊЕРСКА КОМОРА СРБИЈЕ

CONFERENCE SUPPORT

Magana COOP - Pančevo APSOLUTNO IZOLOVANOI www.magnacoop.com office@magnacoop.com

PLACES AND TECHNOLOGIES 2016

KEEPING UP WITH TECHNOLOGIES TO CREATE COGNITIVE CITY BY HIGHLIGHTING ITS SAFETY, SUSTAINABILITY, EFFICIENCY, IMAGEABILITY AND LIVEABILITY

CONFERENCE PROCEEDINGS OF THE 3RD INTERNATIONAL ACADEMIC CONFERENCE ON PLACES AND TECHNOLOGIES

CONFERENCE ORGANISERS

University of Belgrade - Faculty of Architecture and

Professional Association Urban Laboratory

ORGANIZING COMMITTEE

Founding members of the Organizing committee

Dr Eva Vaništa Lazarević Conference Director, University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Milena Vukmirović

Conference Executive Coordinator, University of Belgrade, Faculty of Architecture and Urban Laboratory, Belgrade, Serbia

Dr Aleksandra Krstić Furundžić

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Aleksandra Đukić University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Associate members of the Organising committee

Jelena Samardžić Faculty of Information Technology Belgrade Metropolitan University, Belgrade, Serbia

TECHNICAL COMMITTEE

Dr Milena Vukmirović Conference Executive Coordinator, University of Belgrade, Faculty of Architecture and Urban Laboratory, Belgrade, Serbia

v

Branislav Antonić University of Belgrade, Faculty of Architecture, Belgrade, Serbia

SCIENTIFIC COMMITTEE

In Alphabetical order

Dr Laura Aelenei, National Energy and Geology Laboratory (LNEG), Lisbon, Portugal

Dr Ivan Aleksić,

University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geoinformatics, Belgrade, Serbia

Dr Evangelina Athanassiou, Aristotle University of Thessaloniki School of Architecture, Thessaloniki, Greece

Dr Milica Bajić Brković, ISOCARP - The International Society of City and Regional Planners, The Hague, Netherlands

Dr Ljiljana Blagojević, University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Ružica Božović Stamenović,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia and National University of Singapore, Singapore

Dr Olja Čokorilo, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia

Dr Grygor Doytchinov, Institute for Urban Design, Technical University of Graz, Austria

Dr Nataša Danilović Hristić,

Urban Planning Institute of Belgrade, Belgrade, Serbia

Dr Vladan Đokić,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Aleksandra Đukić,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Alenka Fikfak,

University of Ljubljana, Faculty of Architecture, Ljubljana, Slovenia

Dr Dejan Filipović,

University of Belgrade, Faculty of Geography, Belgrade, Serbia

Dr Darija Gajić,

University of Banja Luka, Faculty of Architecture and Civil Engineering, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Dr Bob Giddings,

Northumbria University, Faculty of Engineering and Environment, Newcastle, United Kingdom

Dr Jelena Ivanović Šekularac,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Vlatko Korobar,

St. Cyril and Methodius University, Faculty of Architecture, Skopje, FYR Macedonia

Dr Saja Kosanović,

University of Priština, Faculty of Technical Sciences, Department of Architecture, KosovskaMitrovica, Serbia

Dr Aleksandra Krstić-Furundžić, University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Višnja Kukoč, University of Split, Faculty of Civil Engineering, Architecture and Geodesy, Split, Croatia

Dr Piotr Lorens, Gdansk University of Technology, Faculty of Architecture, Gdansk, Poland

Dr Lucia Martincigh, University of Roma Tre, Faculty of Architecture, Rome, Italy

Prof. LjubomirMiščević, University of Zagreb, Faculty of Architecture, Zagreb, Croatia

Acad. BranislavMitrović, University of Belgrade - Faculty of Architecture, Belgrade, Serbia

Dr Juan Luis Rivas Navarro, University of Granada, Department of Urban and Regional Planning, Granada, Spain

Dr Grzegorz Peczek, Sopot University of Applied Science, Sopot, Poland

Dr Lea Petrović Krajnik, University of Zagreb, Faculty of Architecture, Zagreb, Croatia

Dr Miroslava Raspopović,

Faculty of Information Technology, Belgrade Metropolitan University, Belgrade, Serbia

Dr Ralf Risser, Research Institute FACTUM, Vienna, Austria

Dr Lina Seduikyte, Kaunas University of Technology, Faculty of Civil Engineering and Architecture, Kaunas, Lithuania

Manfred Schrenk, CORP - Competence Center for Urban and Regional Planning, Vienna, Austria

Dr Jasmina Siljanoska,

St. Cyril and Methodius University, Faculty of Architecture, Skopje, FYR Macedonia

Dr Metka Sitar,

University of Maribor, Faculty of Civil Engineering, Traffic Engineering and Architecture, Maribor, Slovenia

Dr Predrag Šiđanin,

University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia

Dr Ljupko Šimunovic,

University of Zagreb Faculty of Transport and Traffic Sciences, Zagreb, Croatia

Dr Stefan van der Spek,

Delft University of Technology, Faculty of Architecture and Built Environment, Delft, Netherlands

Dr Svetlana Stanarević,

University of Belgrade, Faculty of Security Studies, Belgrade, Serbia

Dr Milena Stavrić,

Graz University of Technology, Faculty of Architecture, Institute of Architecture and Media, Graz, Austria

Dr Aleksandra Stupar,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Eva Vaništa Lazarević,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Milena Vukmirović,

University of Belgrade, Faculty of Architecture and Urban Laboratory, Belgrade, Serbia

Dr Salih Yilmaz,

Izmir KatibCelebi University, Department of Engineering and Architecture, Izmir, Turkey

REGIONAL AND GUEST DEANS COMMITTEE

In Alphabetical order

Dr Bálint Bachmann,

University of Pécs, Pollack Mihály Faculty of Engineering and Information Technology, Pécs, Hungary

Dr Dženana Bijedić,

Vice-dean), University of Sarajevo, Faculty for Architecture, Sarajevo, Bosnia and Herzegovina

MSc Peter Gabrijelčič, University of Ljubljana, Faculty of Architecture, Ljubljana, Slovenia

MSc Boris Koružnjak, University of Zagreb, Faculty of Architecture, Zagreb, Croatia

Dr Florian Nepravishta,

(Department department), Polytechnic University of Tirana, Department of Architecture, Tirana, Albania

Dr Svetislav Popović,

University of Montenegro, Faculty of Architecture, Podgorica, Montenegro

Dr Milenko Stanković,

University of Banja Luka, Faculty of Architecture and Civil Engineering, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

REVIEWERS

Dr Evangelina Athanassiou,

Aristotle University of Thessaloniki School of Architecture, Thessaloniki, Greece

Dr Ljiljana Blagojević, University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Ružica Božović Stamenović,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia and National University of Singapore, Singapore

Dr Olja Čokorilo, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia

Dr Grygor Doytchinov, Institute for Urban Design, Technical University of Graz, Austria

Dr Nataša Danilović Hristić, Urban Planning Institute of Belgrade, Belgrade, Serbia

Dr Aleksandra Đukić,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Alenka Fikfak,

University of Ljubljana, Faculty of Architecture, Ljubljana, Slovenia

Dr Darija Gajić,

University of Banja Luka, Faculty of Architecture and Civil Engineering, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Dr Bob Giddings,

Northumbria University, Faculty of Engineering and Environment, Newcastle, United Kingdom

Dr Jelena Ivanović Šekularac,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Vlatko Korobar,

St. Cyril and Methodius University, Faculty of Architecture, Skopje, FYR Macedonia

Dr Saja Kosanović,

University of Priština, Faculty of Technical Sciences, Department of Architecture, KosovskaMitrovica, Serbia

Dr Aleksandra Krstić-Furundžić,

University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Višnja Kukoč,

University of Split, Faculty of Civil Engineering, Architecture and Geodesy, Split, Croatia

Dr Lucia Martincigh,

University of Roma Tre, Faculty of Architecture, Rome, Italy

Dr Juan Luis Rivas Navarro,

University of Granada, Department of Urban and Regional Planning, Granada, Spain

Dr Grzegorz Peczek, Sopot University of Applied Science, Sopot, Poland

Dr Lea Petrović Krajnik, University of Zagreb, Faculty of Architecture, Zagreb, Croatia

Dr Miroslava Raspopović, Faculty of Information Technology, Belgrade Metropolitan University, Belgrade, Serbia

Dr Ralf Risser, Research Institute FACTUM, Vienna, Austria

Dr Metka Sitar,

University of Maribor, Faculty of Civil Engineering, Traffic Engineering and Architecture, Maribor, Slovenia

Dr Predrag Šiđanin, University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia

Dr Ljupko Šimunovic, University of Zagreb Faculty of Transport and Traffic Sciences, Zagreb, Croatia

Dr Stefan van der Spek, Delft University of Technology, Faculty of Architecture and Built Environment, Delft, Netherlands

Dr Svetlana Stanarević, University of Belgrade, Faculty of Security Studies, Belgrade, Serbia

Dr Aleksandra Stupar, University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Eva Vaništa Lazarević, University of Belgrade, Faculty of Architecture, Belgrade, Serbia

Dr Milena Vukmirović, University of Belgrade, Faculty of Architecture and Urban Laboratory, Belgrade, Serbia

TABLE OF CONTENTS

ARCHITECTURAL TECHNOLOGIES I – ENERGY ISSUES	
DETERMINATION OF ENERGY CHARACTERISTICS OF TRANSPARENT ELEMENTS OF ENVELOPE OF RESIDENTIAL BUILDINGS IN BOSNIA AND HERZEGOVINA Darija Gajić	3
ECO-ENERGETIC RECONSTRUCTION OF ARCHITECTURAL STRUCTURES BY APPLYING MODERN FACADE TECHNOLOGIES Olja Joksimović, Katarina Vukosavljević	11
MODERNIZATION OF EXISTING GLASS FACADES IN ORDER TO IMPLEMENT ENERGY EFICIENCY AND MEDIA CONTENT Jasna Čikić Tovarović, Jelena Ivanović Šekularac, Nenad Šekularac	19
EFFECTS OF WINDOW REPLACEMENT ON ENERGY RENOVATION OF RESIDENTIAL BUILDINGS – CASE OF THE SERBIAN BUILDING PRACTICE Ana Radivojević, Aleksandar Rajčić, Ljiljana Đukanović	27
GREEN ROOF RETROFIT POTENTIAL IN A DENSELY POPULATED BELGRADE MUNICIPALITY Katarina Vukosavljević, Olja Joksimović, Stevan Vukadinović	35
ENERGY REFURBISHMENT OF PUBLIC BUILDINGS IN SERBIA Milica Jovanović Popović, Miloš Nedić, Ljiljana Djukanović	43
PROBLEM OF PROTECTION OF ORIGINAL APPEARANCE OF PREFABRICATED CONCRETE FACADES AND ENERGY IMPROVEMENT MEASURES – EXAMPLE OF NEW BELGRADE Nikola Macut, Ana Radivojević	51
SUNLIGHTING: A BRIGHT LIGHT SOURCE FOR MULTI-STORY BUILDING CORES Liliana Beltran	59
ARCHITECTURAL TECHNOLOGIES II - INNOVATIVE METHODS, SOFTWARE AND TOOLS	
BIM AND GREEN BUILDING DESIGN: EXPECTATIONS, REALITY AND PERSPECTIVES Igor Svetel, Marko Jarić, Nikola Budimir	69
UNDER THE SKIN - DETERMINING ELECTRICAL APPLIANCES FROM SURFACE 3D SCANS Urlich Krispel, Torsten Ullrich, Martin Tamke	77

ARCHITECTURAL DIAGRAM OF A CITY 85 Olivera Dulić, Viktorija Aladžić 93 DIGITAL TOOLS - BASED PERFORMANCE EVALUATION OF THE ADAPTIVE 93 BUILDING ENVELOP IN THE EARLY PHASE OF DESIGN Komnen Žižić, Aleksandra Krstić-Furundzić

xviii

INCREASING QUALITY OF PLACE BY USERS VALUE ORIENTATION Alenka Temeljotov Salaj, Svein Bjorberg, Nikolaj Salaj	101
COMFORT QUALITY IN THE ARCHITECTURAL TRANSFORMATION OF EXISTING FACILITIES Saša B. Čvoro, Malina B. Čvoro, Una Umićević	109
BUILDING STRUCTURES AND MATERIALS	
CONCEPTUAL STRUCTURAL DESIGN STRATEGIES FOR REDUCING ENERGY CONSUMPTION IN BUILDINGS Aleksandra Nenadović, ŽikicaTekić	119
COMPARISON OF THE SUSTAINABILITY OF DIFFERENT TECHNIQUES FOR THE STRENGTHENING OF REINFORCED CONCRETE COLUMNS Tanya Chardakova, Marina Traykova	125
THE ARCHITECTURAL ASPECT OF DESIGNING THE OFFICE ENVIRONMENT IN THE MULTIFUNCTIONAL BUILDING IN THE CITY CENTRE Anna Rynkowska-Sachse	133
MITIGATE THE HOUSING DEPRIVATION IN THE INFORMAL CITIES: MODULAR, FLEXIBLE AND PREFAB HOUSES Frabrizio Finucci, Adolfo Barrata, Laura Calcagnini, AntonioMagaro, OttavioMinnella, Juan Martin Piaggio	141
AN EXAMPLE OF USING RECYCLED CRUSHED CLAY BRICK AGGREGATE: A PREFABRICATED COMPOSITE FAÇADE PANEL WITH THE FACE OF STONE Tijana Vojinović Ćalić, Dragica Jevtić, Aleksandra Krstić-Furundžić	149
CLIMATE CHANGE I – ENERGY ISSUES	
ENERGY MAP OF KRAGUJEVAC AS AN INTRODUCTION TO THE ANALYSIS OF NECESSARY INTERVENTION MEASURES ON BUILDINGS IN ORDER TO ADAPT TO CLIMATE CHANGE Iva Poskurica Glišović	159
THE IMPACT OF CLIMATE CHANGE ON THE ENERGY PERFORMANCE OF HISTORICAL BUILDINGS Alexandra Keller, Cristian Petrus, Marius Mosoarca	167
INFLUENCE OF DIFFERENT PAVEMENT MATERIALS ON WARMING UP OF PEDESTRIAN AREAS IN SUMMER SEASON Jelena Đekić, Petar Đekić, Milena Dinić Branković, Mihailo Mitković	175
ANALYSIS OF ELECTRICITY GENERATION RESULTS OF FIRST MINI SOLAR POWER PLANTS IN THE SOUTH OF SERBIA WITH VARYING INCLINATION OF PHOTOVOLTAIC PANELS AND DIFFERENT ENVIRONMENTAL CONDITIONS Mihailo Mitković, JelenaĐekić, Petar Mitković, Milica Igić	183
EDUCATION NEEDS AND INFLUENTIAL FACTORS ON ENVIRONMENTAL PROTECTION IN FUNCTION OF SUSTAINABLE DEVELOPMENT AT HIGHER EDUCATION INSTITUTIONS Marijola Božović, Milan Mišić, Zorica Bogićević, Danijela Zubac	191

BUILDING CLIMATE CHANGE II – STRATEGIES, PROTECTION AND FLOODS

EVALUATING THE CO-BENEFITS OF FLOOD MITIGATION MEASURE – A CASE STUDY OF SOUTHERN YUNLIN COUNTY IN TAIWAN Yi-Hsuan Lin	201
FLOODING RISK ASSESSMENT IN MOUNTAIN VILLAGES—A CASE STUDY OF KAOHSIUNG CITY Ting-Chi Hsu, Han-Liang Lin	209
SPATIAL PLANNING IN VIEW OF FLOOD PROTECTION-METHODOLOGICAL FRAMEWORK FOR THE BALCAN COUNTRIES Brankica Milojević	217
CLIMATE WARS AND REFUGEES: HUMAN SECURITY AS A PATHWAY TOWARDS THE POLITICAL? Thomas Schad	225
LOW-IMPACT DEVELOPMENT STRATEGIES ASSESSMENT FOR URBAN DESIGN Yu-Shan Lin, Han-Liang Lin	235
SUSTAINABLE COMMUNITIES AND PARTICIPATION I – PLANNIG ISSUES	
THE POSSIBILITIES OF SURVEY AS A METHOD TO COLLECT AND THE DERIVE MICRO-URBAN DATA ABOUT NEW COLLECTIVE HOUSING IN SERBIA Branislav Antonić	247
POSITION OF THE SOCIAL HOUSING ACCORDING TO THE URBAN PLANNING REGULATION OF THE CITY OF NIS – DO THEY PROMOTE THE INCLUSION? Nataša Petković Grozdanović, Branislava Stoiljkovic, Goran Jovanović	255
INFLUENCE OF DIFFERENT APPROACHES IN DEVELOPMENT OF LOCAL RESIDENTIAL BUILDING TYPOLOGIES FOR ESTIMATION OF BUILDING STOCK ENERGY PERFORMANCE Milica Jovanović Popović, Dušan Ignjatović, Bojana Stanković	
TOWARDS A LOW-CARBON FUTURE? CONSTRUCTION OF DWELLINGS AND ITS IMMEDIATE INFRASTRUCTURE IN CITY OF SPLIT Višnja Kukoč	271
SCENARIOS IN URBAN PLANNING AND THE MULTI-CRITERIA METHOD. A MEANINGFUL EXPERIENCE IN ITALY: PIANO IDEA IMPLEMENTED IN JESI AN,2004	219
Giovanni Sergi, Paolo Rosasco THE PUBLIC INSIGHT AND INCLUSIVITY IN THE PLANNING PROCESS	287
Nataša Danilović Hristić, Nebojša Stefanović	
TOWARD THE SUSTAINABLE CITY – COMMUNITY AND CITIZENS INCLUSION IN URBAN PLANNING AND DESIGN OF URBAN GREEN SPACES: A REVIEW OF SKOPJE	295
Divna Penčić, Snezhana Domazetovska, Stefanka Hadji Pecova	

CUNCEPTS, METHODS AND COMMUNITY
HOW TO DEVELOP AND DESIGN HEALTHY URBAN ENVIRONMENT? Sanja Štimac, Anja Jutraž
SUSTAINABILITY AND BROWNFIELD REGENERATION Kristina Azarić
THE SOCIAL DIMENSION OF A SUSTAINABLE COMMUNITY: UNDERSTANDING OF THE EXISTING SPACE Silvia Grion, Elisabeth Antonaglia, Barbara Chiarelli
HOW TO UNDERSTAND THE GLOBAL PHENOMENON OF URBAN SHRINKAGE AT LOCAL LEVEL? COMPARISON OF URBAN AREAS IN ROMANIA AND SERBIA Mihai-Ionut Danciu, Branislav Antonić, Smaranda Maria Bica
SPATIAL PATTERNS OF SERBIAN MIGRANTS IN VIENNA AND IN THE SETTLEMENTS OF THEIR ORIGIN IN EASTERN SERBIA Branislav Antonić, Tamara Brajović
KEEPING THE CITY LIVEABLE FOR INHABITANTS AND EFFICIENT FOR TOURISTS: THE PILGRIMAGE ROUTES Lucia Martincigh, Renata Bizzotto, Raffaella Seghetti, Marina Di Gauda, Giovanni Perrucci
ENVIRONMENTAL PROBLEMS AND CITIZEN PARTICIPATION IN MEDIUM-SIZED TOWNS OF SERBIA Anđelka Mirkov
URBAN PROBLEMS OF HILLY AND MOUNTAINOUS RURAL SETTLEMENTS IN NIŠ MUNICIPALITY Milica Igić, Petar Mitković, Jelena Đekić, Milena Dinić Branković
IMAGE, IDENTITY AND QUALITY OF PLACE I – PLANNING ISSUES
THE STRATEGIES OF PLACE-MAKING. SOME ASPECTS OF MANIFESTATIONS OF POSTMODERN IDEAS IN LITHUANIAN ARCHITECTURE Martynas Mankus
DESIGNING CENTERS OF SUBURBAN SETTLEMENTS IN THE POST-SOCIALIST CITY – NIŠ CASE STUDY Milena Dinić Branković, Jelena Đekić, Petar Mitković, Milica Igić
TRANSITION AND THE CITY: TRANSFORMATION OF URBAN STRUCTURE

POST INDUSTRIAL CITIES: CREATIVE PLAY - FAST FORWARD BELGRADE 2016

THE FUTURE OF OLD INDUSTRIAL AREAS - SUSTAINABLE APPROACH

Eva Vaništa Lazarević, Marija Cvetković, Uroš Stojadinović

DURING THE POST-SOCIALIST PERIOD Dejana Nedučin, Milena Krklješ

Anica Tufegdžić, Maria Siladji

SUSTAINABLE COMMUNITIES AND PARTICIPATION II -

CREATING IDENTITY AND CHARACTER OF NEW SETTLEMENT FORMED DUE TO GROWTH OF THE CITY- ON THE EXAMPLE OF PODGORICA Ema Alihodžić Jašarović, Edin Jašarović	413
SPINUT-POLJUD RESIDENTIAL AREA IN SPLIT, CROATIA Vesna Perković Jović	421
IMAGE, IDENTITY AND QUALITY OF ZAPRUĐE HOUSING DEVELOPMENT IN NOVI ZAGREB Ivan Milnar, Lea Petrović Krajnik, Damir Krajnik	429
URBAN IDENTITY OF BORDER SPACES. CONSTRUCTING A PLACE IN THE BORDER CROSSING BETWEEN SPAIN AND MOROCCO IN CEUTA Belen Bravo Rodriguez, Juan Luis Rivas Navarro, Alicia Jiménez Jiménez	435
ZEITGEIST & GENIUS LOCI: TRADE VALUE AESTHETIC AND WEAKNESS OF AUTHOR'S IDENTITY IN RECENT SERBIAN ARCHITECTURE Aleksandar Kadijević	445
IMAGE, IDENTITY AND QUALITY OF PLACE II - PUBLIC SPACES	
PRESERVING PLACE MEANING IN FUNCTION OF TRANSFORMATION OF OPEN PUBLIC SPACES Ana Špirić, SanjaTrivić	455
STREET LIFE DIVERSITY AND PLANNING THE URBAN ENVIRONMENT. COMPARATIVE STUDY OF SOFIA AND MELBOURNE Silvia Chakarova	463
TRANSFORMATIONS AND PERMANENCE OF REPUBLIC SQUARE Stefan Škorić, Milena Krklješ, Dijana Brkljač, Aleksandra Milinković	473
THE IMAGE OF THE CITY VS. SEMI-PUBLIC SPACES OF SHOPPING MALLS: CASE STUDY OF BELGRADE Marija Cvetković, Eva Vaništa Lazarević	481
THE MARKET HALL OF PÉCS Balazs Kokas, Hutter Ákos, Veres Gábor, Engert Andrea, Greg András, Sike Ildikó, Alexandra Pető	489
INNOVATIVE PUBLIC SPACE REHABILITATION MODELS TO CREATE CONDITIONS FOR COGNITIVE - CULTURAL URBAN ECONOMY IN THE AGE OF MASS INDIVIDUALISATION Katarzyna Bartoszewicz, Piotr Lorens	497
ILLUMINATION OF FACADES OF PUBLIC BUILDINGS IN NOVI SAD AND ITS IMPACT ON SPATIAL PERCEPTION Dijana Brkljač, Milena Krklješ, Aleksandra Milinković, Stefan Škorić	507
COGNITIVE PERFORMANCES OF PEDESTRIAN SPACES Milena Vukmirović, Branislav Folić	515

IMAGE, IDENTITY AND QUALITY OF PLACE III – CONCEPT, METHODS, EDUCATION

THE CRIMINAL CITY: URBAN RESET AFTER "COLECTIV" Agelica Stan	527
TOWARD THE ULTIMATE SHAPE-SHIFTER: TESTING THE OMNIPOTENCE OF DIGITAL CITY Aleksandra Stupar, Tatjana Mrđenović	535
MANAGEMENT OF URBAN IMAGE AS A TOOL FOR PLANNING. THE CASE OF THESSALONIKI Kleoniki Gkioufi, Eleni Gavra	541
VISIBLE AND INVISIBLE PROCESSES AND FLOWS OF TIME-SPACE OF ARCHITECTURAL AND URBAN CONTINUITY OF THE CITY Velimir Stojanović	549
FORMS OF CONTINUITY IN ARCHITECTURAL SPACE Petar Cigić, Milena Kordić	555
URBAN DESIGN EDUCATION FOR PLACEMAKING: BETWEEN COGNITION AND EMOTION Jelena Živković, Zoran Đukanović, Uroš Radosasvljević	565
SKETCHBOOK AS AN ARCHITECTURAL DESIGN INSTRUMENT OF THE COGNITIVE CREATION PROCESS FOR THE QUALITY OF PLACE Igor Rajković, Uroš Radosavljević, Ana Zorić	573
THE MUSICALITY OF UNDULATING GLASS PANES IN THE CONVENT OF LA TOURETTE Marko Slaviček, Anja Kostanjšak	581
THE ROUTES OF DIGITALIZATION – FROM REAL TO VIRTUAL CITY AND VICE VERSA Miodrag Ralević, Tatjana Mrđenović	587
RESILIENCE OF PLACES	
A SHRED OF PLACE IN A DIGITAL ERA HUMANITARIAN DISASTER Pavlos Lefas, Nora Lefa	599
URBAN SPACES MORPHOLOGY AND MICROCLIMATE CONDITIONS: A STUDY FOR A TYPICAL DISTRICT IN THESSALONIKI Stella Tsoka, Katerina Tsikaloudaki, Theodoros Theodosiou	605
SPONTANEOUS DEVELOPMENT AND RESILIENCE PLACES – A CASE STUDY OF ELECTRONIC INDUSTRY NIS (SERBIA)	613

A SHRED OF PLACE IN A DIGITAL ERA HUMANITARIAN DISASTER Pavlos Lefas, Nora Lefa	599
URBAN SPACES MORPHOLOGY AND MICROCLIMATE CONDITIONS: A STUDY FOR A TYPICAL DISTRICT IN THESSALONIKI Stella Tsoka, Katerina Tsikaloudaki, Theodoros Theodosiou	605
SPONTANEOUS DEVELOPMENT AND RESILIENCE PLACES – A CASE STUDY OF ELECTRONIC INDUSTRY NIS (SERBIA) Liljana Jevremović, Branko Turnsek, Aleksandar Milojkovic, Milanka Vasic, Marina Jordanovic	613
SUSTAINABLE MODEL FOR REGIONAL HOSPITALS IN HUMID TROPICAL CLIMATE Nataša Čuković Ignjatović, Dušan Ignjatović, Dejan Vasović	621

xxiii

MATERIAL AND COGNITIVE STRUCTURES OF BUILDINGS AND PLACES AS INTEGRATED PATTERNS OF PAST, PRESENT AND FUTURE Dženana Bijedić, Rada Cahtarevic, Mevludin Zecević, Senaida Halilović	627
BOOSTING THE RESILIENCE OF THE HEALTHCARE SYSTEM IN BELGRADE: THE ROLE OF ICT NETWORKS Jelena Marić, Aleksandra Stupar	635
INTERCONNECTION OF ARCHITECTURE AND NEUROSCIENCE - RESHAPING OUR BRAINS THROUGH PHYSICAL STRUCTURES Morana Pap, Mislav Pap, Mia Pap	645
THE POTENTIAL OF URBAN AGRICULTURE IN REVITALIZATION OF A METROPOLIS Gabriela Rembarz	651

ADAPTIVE REUSE

IMPROVING STRATEGIES FOR FUNCTIONAL UPGRADE FOR AN "INTEGRATED REHABILITATION" Francesca Guidolin	661
ADAPTIVE REUSE AND SOCIAL SUSTAINABILITY IN THE REGENERATION PROCESSES OF INDUSTRIAL HERITAGE SITES Sonja Ifko, Ana Martinović	669
REVEALING THE MONTENEGRIN KATUN AS A PLACE OF REUSABLE COGNITIVE TECHNOLOGIES Edin Jašarović, Ema Alihodžić Jašarović	683
INTERSECTIONS OF NOW AND THEN; IMPLEMENTATION OF ADAPTIVE REUSE AS CATALYST OF SPACE TRANSFORMATION Anja Kostanjšak, Nikola Filipovic	691
MULTIFAMILY HOUSING IN BELGRADE – ENERGY PERFORMANCE IMPROVING POTENTIAL AND ARCHITECTURAL CHALLENGES Nataša Ćuković Ignjatović, Dusan Ignjatovic, Bojana Stankovic	699
SPATIAL STRUCTURE OF THE SUBURBAN ZONES IN SELECTED ENTREPRENEURSHIPS NESTS OF THE TRICITY METROPOLITAN AREA Grzegorz Pęczek, Justyna Martyniuk-Pęczek	707
INNOVATIVE METHODS AND APPLICATIONS FOR SMART(ER) CITIES	
TECHNOLOGY AS A MEDIATOR BETWEEN MAN AND CITY IN THE CONTEXT OF CONTEMPORARY CHALLENGES Katarina Stojanović	725
CITY INTELLIGENCE INFORMATION MODELING Alice Pasquinelli, Silvia Mastrolembo, Franco Guzzeti, Angelo Ciribini	731

AN INTRODUCTION TO THE PHYSICAL PLANNING INFORMATION SYSTEM OF 739 CROATIA AND NEW GENERATION OF SPATIAL PLANS Sunčana Habrun, Lidija Škec, Danijel Meštrić

THE CONCEPT OF SMART ARCHITECTURE IN SERBIA – ONE BELGRADE EXPIRIENCE Dragan Marčetić, Andrej Josifovski	747
THE IDEA OF COGNITIVE CITY - A CHALLENGE FOR NEW TECHNOLOGY TO PROMOTE HEALTH Aleksandra Krstić Furundžić, Nikola Z. Furundzić, Dijana P. Furundzić	755
MIXED REALITY ENVIRONMENT AND OPEN PUBLIC SPACE DESIGN Aleksandra Đukić, Dubravko Aleksić	761
VULNERABILITY OF PUBLIC SPACE AND THE ROLE OF SOCIAL NETWORKS IN THE CRISIS Milena Vukmirović, Miroslava Raspopović	769
NEUTRAL GROUNDING POINTS WITHIN THE GENERAL DISTRIBUTION SYSTEM AS AN ELEMENT OF ENVIRONMENTAL PROTECTION Zorica Bogićević, Slobodan Bjelić, Bojan Jovanović, Milan Misic	779
THE ROLE OF COGNITIVE – CULTURAL ECONOMY IN CITY'S GLOBAL POSITIONING Sanja Simeunčević Radulović, Biserka Mitrović	789
UDDAN MODILITY TRANSPORT AND TRAFFIC COLUTIONS	

URBAN MOBILITY, TRANSPORT AND TRAFFIC SOLUTIONS

THE CONTRIBUTION OF ITS TO THE SAFETY IMPROVEMENT OF VULNERABLE ROAD USERS Bia Mandžuka, Ljupko Šimunović, Pero Škorput	799
BUILDING ENVIRONMENTAL PERSPECTIVE OF AIRCRAFT OPERATIONS AROUND BELGRADE NIKOLA TESLA AIRPORT Olja Čokorilo, Ivana Čavka	805
TRANSPORT PROJECTS AND PUBLIC PARTICIPATION Davor Brčić, Stjepan Kelcec-Suhovec	813
DISLOCATION OF THE EXISTING RAILWAY AND BUS STATION IN THE CITY OF KUMANOVO AND THEIR INTEGRATION INTO A TRANSPORT HUB WITH ADJOINING CONTENTS Mihajlo Zinoski, Medarski Igor, Stefani Solarska	817
THE IMPACTS OF TRANSPORT INFRASTRUCTURES ON URBAN GEOGRAPHY Federico Andrea Innarone	825
LIQUID LIFE: A RELATIONSHIP BETWEEN VULNERABILITY AND MOBILITY – THE CONSEQUENCES FOR A SUSTAINABLE CITY, StevanTatalović	831

PROBLEM OF PROTECTION OF ORIGINAL APPEARANCE OF PREFABRICATED CONCRETE FACADES AND ENERGY IMPROVEMENT MEASURES – EXAMPLE OF NEW BELGRADE

Nikola Macut¹

Faculty of Architecture, University of Belgrade, Bulevar Kralja Aleksandra 73/II, Belgrade, Serbia, nikola.macut@arh.bg.ac.rs

Ana Radivojević

Faculty of Architecture, University of Belgrade, Bulevar Kralja Aleksandra 73/II, Belgrade, Serbia, ana@arh.bg.ac.rs

ABSTRACT

As a result of renewal of the Serbian capital after the World War II, a newly built residential settlement named New Belgrade was erected on the left bank of the river Sava. The most intensive time of its construction includes the period from 1950 to 1980, when prefabricated construction systems were omnipresent. As a manner and reflection of that time, diverse design solutions were applied on residential buildings from New Belgrade in which concrete was the main façade material. The most widespread finishes were: exposed concrete panels with different textures and reliefs; coated, i.e. painted concrete panels; concrete panels with ceramic tiles finishing; combined façades of exposed concrete and brick.

Today, in many cases of New Belgrade residential blocks, there are serious damages of concrete façades that require extensive repair. At the same time, some of the blocks enjoy the status of previous protection as cultural monuments. On the other hand, referring to existing buildings, the question of energy efficiency as one of the imperatives of nowadays building practice implies the need for additional thermal insulation along the building's thermal envelope. This type of intervention is, in most of the cases, applied externally, representing in this way a measure that might significantly change the original building appearance. In both cases, preservation of appearance of concrete façades is questionable, which raises the problem of protection of original appearance of analysed buildings.

This paper strives to present the overview of the applied concrete façades and their present condition in selected residential blocks from New Belgrade in the light of energy performance of their facade envelopes in the present state. This review should point out potentials and limitations for their further improvement having in mind the need for preservation of authenticity of the analysed buildings.

Keywords: prefabricated concrete facades, energy renovation, authenticity, residential blocks, New Belgrade

¹ Corresponding author

3rd INTERNATIONAL ACADEMIC CONFERENCE

INTRODUCTION

The problem of protection of original appearance of prefabricated concrete facades which is the topic of this paper is analysed on the area that is well known as *the central area of New Belgrade*. This group of blocks: 21, 22, 23, 28, 29, 30, together with blocks 1 and 2 represents the area of the first erected residential buildings since the 1958. During the era of late modernism, architects brought to us different design solutions as the manner of the time, so every block has its own concept of urban composition, followed with the use of specific type of facades where, in the most cases, concrete dominated. Due to their specific conceptual characteristics and applied principles of modern urbanism, today this huge area has a defined status as area with previous protection. Analysed construction period from 1958 to the 1980s is well known for the use of prefabricated concrete were the main materials. Consequently, different types of prefabricated concrete facades dominated during that time. Apart from concrete, other materials, such as brick, ceramic tiles and different renders, where also in use in design and construction of facade structures.

In this paper four different main types of prefabricated concrete facades are presented. This number of different types was defined by the most widespread types of facades which are omnipresent in analysed area of New Belgrade. Although there are many different types of facades by their shapes, applied materials and dimensions of prefabricated elements, those four can present and become the real represents of them. Four types of facades are classified in groups by their finishing so there are: exposed concrete facades, coated concrete facades, concrete facades with coulier finishing and concrete facades covered with ceramic tiles. Every of classified types have their own characteristics by their structure of prefabricated elements and their existing condition. It is necessary to mention that those selected types of facades were in use in certain blocks of this area and are the most widespread. Those prefabricated elements are analysed by three basic steps. First step is defined as the view and presentation of existing condition of facades after the period of construction and throughout their exploitation. Second step has a purpose of presenting the real thermal characteristics of prefabricated facade elements, with the view of materials which were in use during the construction and their production. Third step of analysis aims to present possibilities of reconstruction of facade elements and improvement of their thermal characteristics in case of protection their original appearance.

EXISTING CONDITION OF FACADE ENVELOPES

During the construction period of residential buildings in the central area of New Belgrade few construction systems were in use such as: IMS, Cross wall panel system and Jugomont system. Every system has its own types of facades which were in use. A small number of applied construction systems did not affect the diversity of façade elements, so many different types of facade elements were in use with structures and finishing of different kind. The existing condition of them is different, from those that experienced serious damages by the time, to those that are almost intact. Those damages have different causers which can be classified in four basic groups. First group is related to the architects and civil engineers and their improper design solutions. Various types of applied production and construction technologies, which in some cases induced poorly produced elements, are classified in the second group. Third group is related to the period of exploitation of buildings and the aging of those applied materials, for the buildings of the central area of New Belgrade have not been reconstructed since the period of erection. Fourth group of causers is defined as a set of human factors, which badly influence the building condition, as well as the condition of facade envelopes. Existing condition of facades is classified by four different types of represented finishing of prefabricated concrete facade elements This classification was preceded by a field work which included analysis and mapping of all types of facade finishing in selected residential blocks. According to that work, the map of applied types of facade finishing is presented in Figure 1.

PLACES AND TECHNOLOGIES 2016

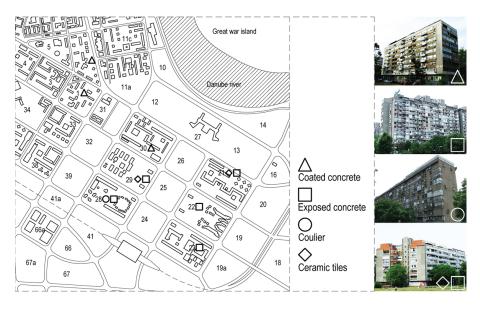


Figure 1: Presence of different types of facade finishing on buildings in analysed blocks (source: Macut, N., 2015)

Exposed concrete facades are present in the central area of New Belgrade in blocks 21, 22, 23, 28, 29 in Figure 1. This type of finishing is present on different types of facade elements such as: parapets, one storey panels, linear elements and elements with different shapes. Texture of façade panels was also one of the specifics of the use of exposed concrete, because it was possible to produce flat elements with rough or smooth surfaces, cannelured or grooved shapes, or shapes with specific geometries according to the design. That diversity of shapes and design solutions brought to us manners of the design period and diffused the use of exposed concrete. Coated pefabricated elements are present in blocks 1, 2, 29, 30 (Figure 1). With those coatings architects were stressing facade elements such as: parapets, linear elements, one storey panels, between windows elements with different geometries of surfaces in case of forming visual effects in specific tonal scales. Concrete facades of this type are present in block 28 in Figure 1. Coulier was in use also during the 1960s until the 1980s. This technique of materialisation gave specific appearance to façade elements. The most important factor of design is related to the types of aggregate. In block 28 two types were in use as pebble and as crushed stone. Every type has its own tonal scales in regard to the type of fraction which is in correlation with roughness of facade surfaces. Coulier was only in use for production of one storey panels. Concrete facades covered with ceramic tiles are present in blocks: 1, 2, 21, 29 (Figure 1). During the construction period only three types of tiles regarding their dimensions were in use. However, their use in different colours and tonal scales formed variety of ornaments on the surfaces of facade elements. Ceramic tiles were integrated elements of panels as they were fixed to the surfaces during the production processes in construction facilities. After approximately 50 years from the construction period, every facade has its own specific condition regarding different factors they were exposed, so it is possible to perceive the existing condition of each facade by field work and analysis (Table 1).

3rd INTERNATIONAL ACADEMIC CONFERENCE

		Type of finishing			
		Exposed concrete	Coated concrete	Coulier finishings	Ceramic tiles
	Parapets			/	
Geometry of façade elemnt	One storey panels				/
	Linear elements			/	
	Between windows elements	/		/	
	Decorative elements		/	/	/

Table 1: Existing condition of facade elements with different finishing (source: Macut, N., 2015)

PLACES AND TECHNOLOGIES 2016

EXISTING THERMAL CHARACTERISTICS OF FACADE ENVELOPES

Although the problem of reconstruction of damages on facade surfaces is one of the basic problems which has to be determined, there is another great problem that affects concrete facades of existing buildings. Problem is related to their energy performance which is far below the nowadays requirements and which contributes to the high rate of energy consumption. To solve this problem and define some future strategies and measures of energy improvement it was necessary to analyse the existing thermal properties, in the first place to calculate the U value [W/m²K] of selected prefabricated elements (Table 2). Facades were selected for analysis according to the previously created classification of facades by their finishing. Parapet elements and one storey panels with different finishings were selected for analysis. In the group of selected panels three-layer panels are the most widespread (Type 1a, Type 2b, Type 2a, Type 2b, Type 3b, Type 4b). Only one of the selected panels has four layers in its structure (Type 4a). Such structure is result of the fact that during the analyzed construction period facade panels were designed of a bearing layer, thermal insulation layer and a finishing layer. Although those panels resemble some contemporary facade structures, their thermal performances are inadequate. Diverse types of panels were analyzed and U - values of their present condition were calculated. Calculation showed that none of the analyzed prefabricated elements do not fulfill nowadays requirements regarding the maximum heat transfer coefficient set for external wall. Relevant Serbian regulation has set the value of U_{max}=0.40W/m²K as recommended value for existing buildings which are subject of reconstruction or energy improvement.

		Structure of parapet	U - value		Structure of one storey panel	U - value
Block 1	Type 1a	inside outside light weight concrete Durisol 16cm precast concrete 4cm	0.632 W/m²K	Type 1b	outside e outside light weight concrete <i>Durisol</i> 10.5cm precast concrete 4cm	0.894 W/m²K
Block 23	Type 2a	outside cement plaster 2cm styrofoam 6cm precast concrete 6cm	0.598 W/m²K	Type 2b	outside cement plaster 2cm styrofoam 6cm precast concrete 16cm	0.543 W/m²K
Block 28	Type 3a	This type does not xist	/	Type 3b	inside outside light weight concrete <i>Keramzit</i> 20.5cm coulier 3cm	1.577 W/m²K
Block 29	Type 4a	inside	0.913 W/m²K	Type 4b	inside outside lime-cement plaster 2cm precast concrete <i>Tarolit</i> 10cm precast concrete 7cm	0.769 W/m²K

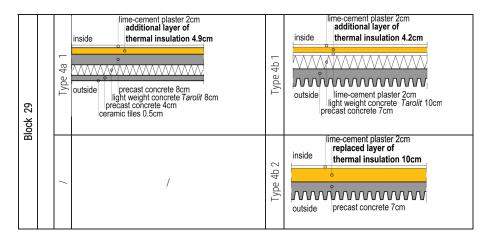
Table 2: Existing condition	of thermal characteristics of	f selected facade types
-----------------------------	-------------------------------	-------------------------

3rd INTERNATIONAL ACADEMIC CONFERENCE

ENERGY IMPROVEMENT MEASURES OF EXISTING CONCRETE FACADE PANELS

In case of energy improvement of existing concrete façade panels, different principles where analysed and calculated. Calculation of the present state shows insufficient thermal properties of existing facade panels. Their complex structure and visual characteristics that provide a specific appearance of the building require careful consideration when choosing the measures for their energy improvement. One problem refers to the question of the thickness of additional thermoinsulating layer. With the already calculated real U-values of panels it is possible to calculate the thickness of additional layer or layers which can improve the thermal properties of a panel aiming to reach the new value of U=0.40W/m²K. Having in mind that values of conventional thermoinsulating materials such as stone wool, glass wool, extruded polystyren (XPS) and expanded polystyren (EPS) are almost the same or similar, accepted value of thermal conductivity of additional thermal insulation for the conducted calculation is λ =0.035 W/m²K. With respect to this, necessary thickness of additional thermal insulation is calculated. The following step in defining the energy improvement measures refers to the placement, i.e. to the possible position of defined insulation layer. Generally speaking, two types of improvement strategies might be applied and are defined as: a) keeping existing layers and-adding new ones, and b) replacing of old layers of thermal insulations with new layers with better thermal characteristics (Table 3). Theoretically, these actions could be performed either on the external, or on the internal side of the facade panel.

First way of improvement considers placing of additional thermal insulation layers and fixing them to the existing panel. Additional layers could be fixed on the outside or inside surfaces of panel. Although this principle is possible, specific problem which is related to the original appearance of facade and its finishing after the process of reconstruction is raised. In this case facades with exposed concretes (Type 2a, Type 2b), ceramic tiles (Type 4a) and coulier finishing (Type 3b) could not be improved by adding new additional layer on the outside surface of wall since such measure would completely change the original appearance of a building. In case of facades, either with specific coatings, and/or with flat surfaces (Type 1a, Type 1b) it is possible to place additional insulation on the outside surface of panel and to coat it with specific facade plaster that is similar to the original appearance of facade panels.


Other principle of replacing insulation with a new one also has some specific requirements which are directly related to the structure of layers inside the panel. Analysing the selected panels, only four panels (Type 1a 3, Type 2a 2, Type 2b 2, Type 4b 2) (Table 3) could be reconstructed by using this principle. Displacement of the old insulation requires removing the layer of internal plaster before the removal of old insulation. Depending on the thermal properties of the new thermal insulation, the thickness of the material might be either thicker (Type 2a 2 and Type 2b 2) or as thick as the original material. (Type 1a 2 and Type 4b 2). Replaced insulation could be coated with lime, cement or lime-cement plasters, or cladded with gypsum board on the internal surface.

Internal application of thermal insulation (either additional layers of new-replacing layers) might bring the problem of reduction of the net area of flats, due to which such measures often do not find the approval of users.

				Structure of one storey panel	
Block 1	ermal insulation in facade panels	Type 1 a1	outside additional layer of thermal insulation 3.2cm	Type 1 b1	precast concrete 4cm light weight concrete Duriso/ 16cm cast in-situ concrete 7cm * outside additional layer of thermal insulation 4.8cm coment plaster 1 cm
		Type 1a 2	Ime-cement plaster 2cm additonal layer of thermal insulation 3.2cm	Type 1b 2	outside cast in-situ concrete 7cm light weight concrete 7cm light weight concrete 4cm
		Type 1a 3	inside lime-cement plaster 2cm replaced layer of thermal insulation 16cm outside precast concrete 4cm	/	/
Block 23	Possible dipostitons of new layers of thermal insulation in facade panels	Type 2a 1	lime-cement plaster 2cm additonal layer of thermal insulation 2.9cm outside cement plaster 2cm styrofoam 6cm precast concrete 6cm	Type 2b 1	inside outside outside outside cement plaster 2cm additonal layer of thermal insulation 2.3cm cement plaster cement plaster 2cm styrofoam 6cm precast concrete 16cm
		Type 2a 2	inside lime-cement plaster 2cm replaced layer of thermal insulation 7.6cm outside precast concrete 6cm	Type 2b 2	inside lime-cement plaster 2cm replaced layer of thermal insulation 7.4cm outside precast concrete 16cm
Block 28		/	/	Type 3b 1	inside inside thermal insulation 6.5cm

Table 3: Possible improvement measures and dispositions of new thermal insulation layers

3rd INTERNATIONAL ACADEMIC CONFERENCE

CONCLUSIONS

Throughout the process of analysing different types of facade panels it is possible to make an overview of applied materials from the construction period. This information is very important for the further analysis of possible processes of facade reconstructions. By analyzing façade panels through detailed observation, mapping and calculation of thermal characteristics it is possible to realize the real condition of concrete panels and relevant characteristics of applied materials. In this way it is much easier to reconstruct certain facade element and to propose an appropriate energy improvement measure which will fulfil the nowadays criteria. It was shown that since energy improvement became an integral part of nowadays reconstruction of existing buildings, specific building heritage of New Belgrade requires a complex methodology of energy improvement measures that takes into consideration the problem of protection of original appearance of original facades, since these buildings represent the spirit of an era of extensive work on construction of residential buildings and housing block areas.

REFERENCES

Ćulafić, Dragutin. 1978. "Izgradnja stambenog bloka 23 u Novom Beogradu." Izgradnja, no. 10: 37-28.

Jovanović Popović, Milica et al. 2013. National Typology of Residential Buildings in Serbia. Belgrade: Faculty of Architecture, University of Belgrade, GIZ - Deutche Gesellschaft fur internationale Zusammenarbeit.

Koprivica, Bogdan. 1970. "Iskustva GK Beton na građenju objekata po sistemu IMS." Izgradnja, no. 7: XXVIII-XVIII.

Krstić, Aleksandra. 1995. *Osnove materijalizacije savremenih industrijalizovanih objekata*. Beograd: Arhitektonski fakultet Univerziteta u Beogradu.

Laban, Mirjana and Folić Radomir. 2014. "Energy efficiency of industrial made buildings influenced by thermal properties of facades." *Thermal science*, vol. 18, no. 2: 615-630.

Mišić, Biljana. 2010. "O vrednovanju i zaštiti posleratne arhitekture Beograda." Nasleđe, no. 11: 206-193.

Petrović, B. 1964. "Rezultati razvoja montažnog bondruk sistema." Izgradnja, special issue no. 10: 70-76.

Republika Srbija Ministarstvo životne sredine, rudarstva i prostornog planiranja. 2011. "Pravilnik o energetskoj efikasnosti zgrada." *Službeni glasnik Republike Srbije*, no. 61.

Urošević, R. 1958. "Osobine i primena durisola." Izgradnja, no. 11-12: 6-1.

Vučić, Branislav. 1970. "Primena sistema IMS u GP RAD u Novom Beogradu." Izgradnja, no. 8: XIV-VII.