
PLACES AND TECHNOLOGIES 2014

BELGRADE, 3-4. APRIL 2014 KEEPING UP WITH TECHNOLOGIES TO IMPROVE PLACES

Eva Vaništa Lazarević, Aleksandra Đukić, Aleksandra Krstić - Furundžić, Milena Vukmirović conference proceedings

ISBN 978-86-7924-114-6

www.placesandtechnologies.eu

Proceedings of INTERNATIONAL ACADEMIC CONFERENCE ON PLACES AND TECHNOLOGIES

APRIL 3-4, 2014, BELGRADE, SERBIA

PLACES AND TECHNOLOGIES 2014

PROCEEDINGS OF FIRST INTERNATIONAL ACADEMIC CONFERENCE ON PLACES AND TECHNOLOGIES

International Academic Conference on Places and Technologies, Places and Technologies 2014, will be the first conference organized by University of Belgrade – Faculty of Architecture, Professional association Urban Laboratory and University of Belgrade – Faculty of Philosophy.

Editors: Dr Eva Vaništa Lazarević, Dr Aleksandra Krstić-Furundžić, Dr Aleksandra Đukić and Dr Milena Vukmirović

For publisher: Dr Vladan Đokić

Publisher: University of Belgrade – Faculty of Architecture

Design: Stanislav Mirković

Place and year: Belgrade 2014

ISBN 978-86-7924-114-6

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

711.4.01(082)(0.034.2) 711.4:005.591.6(082)(0.034.2)

INTERNATIONAL Academic Conference on Places and Technologies (1st; 2014; Belgrade)

Places and Technologies 2014 [Elektronski izvori] : keeping up with technologies to improve places : conference proceedings : 1st international academic conference, Belgrade, 3-4. April 2014 / [organized by Univerisity of Belgrade - Faculty of Architecture, Professional Association Urban Laboratory and University of Belgrade - Faculty of Philosophy] ; editors Eva Vaništa Lazarević ... [et al.]. - Belgrade : Faculty of Architecture, 2014 (Belgrade : Faculty of Architecture). - 1 USB fleš memorija ; 1 x 2 x 14 cm

Sistemski zahtevi: Nisu navedeni. - Nasl. sa naslovnog ekrana. - Tiraž 150. -Bibliografija uz svaki rad.

ISBN 978-86-7924-114-6

Vaništa Lazarević, Eva, 1961- [уредник]
 Faculty of Architecture (Belgrade)

 а) Градови - Мултидисциплинарни приступ Зборници b) Урбанистичко планирање Технолошки развој - Зборници

COBISS.SR-ID 206380812

ORGANIZERS

GENERAL SPONSOR

SPONSORS

■□ Foundation Dokukino

DONATORS

SUPPORTERS

SKCC.

CONTENTS

PART I: URBANISM

Urban planning and technologies **OVERCOMING BARRIERS TO GROWTH** Stephen Platt 16 **URBAN CHALLENGES OF ENERGY EFFICIENCY AND CONTEXT-**SENSITIVE PLANNING APPROACHES IN BULGARIA Elena Dimitrova 25 NEW URBAN PROTOCOLS FOR FRAGMENTED TERRITORIES _ THE EXAMPLE OF WESTERN THESSALONIKI 33 Styliani Rossikopoulou-Pappa, Valia Fragkia A FEASIBILITY STUDY FOR A TECHNOLOGICAL PARK IN FALCONARA MARITTIMA AN, ITALY Giovanni Sergi 41 SAVING URBAN PLANNING FROM ANOTHER UTOPIAN MODEL Danijela Milojkić, Marija Maruna 48 THE IMPLICATIONS OF DIGITAL TECHNOLOGY ON THE PERCEPTION **OF CENTRALITY** 56 Mihai Alexandru, Cătălina Ioniță **TECHNOLOGY AND LANDSCAPE: REDUCE, REUSE AND RECYCLE** THE MINING DROSSCAPES Nicola Martinelli, Francesco Marocco, Alessandro Reina, Maristella Loi, Federica Greco 63 THE ILLEGAL SETTLEMENTS IN BELGRADE VS. TAMING CITY **GROWTH: CASE STUDY OF BELGRADE** Biserka Mitrović, Miodrag Ralević, Branislav Antonić 71 **IMPACT OF CLIMATE CHANGE IN URBAN PLANNING** Tamara Tošić 78 CONCEPT OF URBAN VILLAGE: THE APPLICATION OF THE CONCEPT AS A FOUNDATION FOR NEW TYPOLOGY OF URBAN VILLAGES **Branislav Antonić** 85 **RESILIENCE AND VULNERABILITY OF URBAN SYSTEMS. A** METHODOLOGICAL PROPOSAL FOR SEISMIC RISK MITIGATION 94 **Rigels Pirgu**

Urban design and technologies

PUBLIC PLACES AND SPLIT DEVELOPMENT MODEL Višnja Kukoč	103
AGILE LANDSCAPES: REDESIGNING URBAN SPACE Anastasios Tellios, Despoina Zavraka	110
PLANNING AND DESIGNING SAFE AND SECURE OPEN PUBLIC SPACES IN SERBIA Svetlana Stanarević, Aleksandra Djukic	118
SPATIAL AND FUNCTIONAL TRANSFORMATION OF BUSINESS AREAS UNDER THE IMPACT OF INFORMATION TECHNOLOGIES – CASE STUDY OF NIŠ ADMINISTRATIVE DISTRICT	
Aleksandar Ristić, Petar Mitković	130
THE IMPACT OF NEW TECHNOLOGIES ON CITY ACUPUNCTURE METHODOLOGY AND INTERVENTIONS Kristina Careva, Rene Lisac	138
COMFORT OF OPEN PUBLIC SPACES: CASE STUDY NEW BELGRADE	150
Aleksandra Djukic, Nevena Novakovic	145
005 PUBLIC ART IN BERLIN Biljana Arandjelovic	151
PROTECTION OF PERSON WHIT DISABILITIES: IMPLEMENTATION	
OF ACCESSIBILITY STANDARDS Dragana Vasiljevic Tomic, Radojko Obradović	160
VERTICAL PUBLIC SPACE Sorana Cornelia Radulescu, Roger Riewe	167
READY-AVAILABLE HYBRID METHODOLOGIES FOR	
CONTEMPORARY PUBLIC SPACE RESEARCH Milena Ivkovic, Berit Piepgras, Robin van Emden	175
	175 181
Milena Ivkovic, Berit Piepgras, Robin van Emden RETAIL – NEW TECHNOLOGIES AND URBAN CENTRALITY	
Milena Ivkovic, Berit Piepgras, Robin van Emden RETAIL – NEW TECHNOLOGIES AND URBAN CENTRALITY Martin Brabant TECHNOLOGY AND NEOLIBERAL URBAN PLACES	181
Milena Ivkovic, Berit Piepgras, Robin van Emden RETAIL – NEW TECHNOLOGIES AND URBAN CENTRALITY Martin Brabant TECHNOLOGY AND NEOLIBERAL URBAN PLACES Marija Cvjetković NEURAL CITIES OR HOW CITIES TEACH US TO DESIGN THEM	181
Milena Ivkovic, Berit Piepgras, Robin van Emden RETAIL – NEW TECHNOLOGIES AND URBAN CENTRALITY Martin Brabant TECHNOLOGY AND NEOLIBERAL URBAN PLACES Marija Cvjetković NEURAL CITIES OR HOW CITIES TEACH US TO DESIGN THEM BETTER	181 191

Urban regeneration and tehcnology

PROPERTY ISSUES IN THE TURKISH URBAN REGENERATION PROJECTS	
Mehmet Çete, Yunus Konbul	215
URBAN ENERGY AND URBAN REGENERATION STRATEGIES: EVALUATION OF IZMIR-UZUNDERE URBAN REGENERATION PROJECT	
Yakup Egercioğlu, Çilem Türkmen	222
THE EMPTY URBAN SPACES AS AN OPPORTUNITY FOR THE CITY TO REINVENT ITSELF: THE CASE OF THE INDUSTRIAL TECHNOLOGICAL OBSOLETENESS Cătălina Ionită, Mihai Alexandru	230
ENHANCEMENT OF URBAN LIFE QUALITY IN URBAN REGENERATION PROJECTS: IZMIR-BAYRAKLI URBAN REGENERATION PROJECT Yakup Egercioğlu, Tuğçe Ertan	238
THE INDUSTRIAL BUILDINGS WHICH USED IN SAUDI ARABIA AND SUSTAINABILITY Wael Al-Buzz	246
AN OVERVIEW OF URBAN REGENERATION PROJECTS IN TURKEY Yunus Konbul, Mehmet Çete	257
ART AND CULTURE AS INITIATORS OF ARCHITECTURAL AND URBAN TRANSFORMATION IN SAVAMALA Ksenija Pantović, Iva Čukić, Jasna Kavran	265
Smart cites/regions and network protocols	
SMART CITY GRAZ: FROM THE VISION TO THE ACTION Carlos Varela Martín, Ernst Rainer, Hans Schnitzer	276
RESIDENTS INTERACTION WITH HOME RESOURCES Cerasela Dinu, Constantin-Daniel Oancea	285
RENEWABLE AND DISTRIBUTED SOURCES WITHIN SMART ENERGY REGIONS	202
	293
THE SMART CITY FOR THE FUTURE. HOW A SPATIALLY ENABLED AFFECTED BY THE URBAN POPULATION? Shahryar Habibi	300
PERFORMANCE EVALUATION OF ROUTING PROTOCOLS FOR AD-	
HOC NETWORKS Ledina Karteri, Valma Prifti	306

SMART CITIES AND CHALLENGES OF SUSTAINABILITY Rigels Pirgu	315
A FUZZY BASED CALL CONTROL SYSTEM IN MOBILE NETWORKS, CONSIDERING PRIORITY COMMUNICATIONS Valma Prifti, Ledina Karteri	323
Historical centers, Building heritage and Technologies	
ICT AND VGI TO PROMOTE MINOR HISTORIC CENTRES AND THEIR LANDSCAPE	001
Pierangela Loconte, Francesco Rotondo	331
THE SUSTAINABILITY AND CULTURAL HERITAGE MANAGEMENT Christian Kersten Hofbauer, Elham Madadi Kandjani, Jean Marie Corneille Meuwissen	339
CONCEPTS OF FORMING OF URBAN SOLUTIONS IN HOUSING SETTLEMENTS IN BELGRADE BUILT IN PRECAST INDUSTRIALIZED SYSTEMS IN SECOND HALF OF XX CENTURY	
Dragana Mecanov	346
NEW ARCHITECTURE IN HISTORICAL CENTRES Alessandro Bruccoleri	355
INFORMATION AND COMMUNICATION TECHNOLOGIES TO IMPROVE THE KNOWLEDGE OF PLACES. THE ROME HISTORICAL CENTRE AS A CASE STUDY	
Francesca Geremia	363
CONTEMPORARY INTERVENTIONS IN HISTORIC PLACES _ THE EXAMPLE OF THESSALONIKI METRO Stavros Apotsos	372
Image and Identity of place	072
THE IMAGE OF TRIFKOVIĆ SQUARE (NOVI SAD, SERBIA) THEN AND	
NOW	
Ivana Blagojević, Ksenija Hiel	380
IDENTITY OF NEW MEDIA SPACES Jelena Brajković, Lidija Đokić	388
THESSALONIKI: A MULTICULTURAL ARCHITECTURAL DESTINATION	
Niki Manou-Andreadis, Maria Milona	400
ELEMENTS OF IDENTITY AND UNUSED POTENTIALS OF CENTRAL ZONE IN NOVI SAD	
Milena Krklješ, Dijana Apostolović, Aleksandra Milinković	408

BELGRADE SKYLINE: CONTINUITY, PARADOXES & DESIRES Vladimir Milenković, Snežana Vesnić, Tatjana Stratimirović	416
CITY OF THE MIND - INVISIBLE IN THE MAP Jelena Stankovic, Milenko Stankovic	424
WHAT MAKES A PLACE? Saskia I. de Wit, Denise Piccinini	432
SUSTAINABILITY, IDENTITY AND ROLE OF TRADITIONAL MATERIALS Olivera Ilić Martinović, Mirjana Miletić	441
IDENTITY OF URBAN SPACES; ASSESSMENT AND EVALUATION Elham Madadi-Kandjani, Christian Kersten Hofbauer, Jean Marie Corneille Meuwissen	448
IMAGE OF SUSTAINABLE PLACES Vladimir Parežanin, Miloš Mihajlović	456
PRESERVATION OF IDENTITY OF SPACE WITHIN RAPID ECONOMIC AND TECHNOLOGICAL DEVELOPMENT OF TOURIST DESTINATIONS IN THE EXAMPLE OD JIJOCA DE JERICOACOARA IN BRAZIL	
Maja Momirov	469
PART II: ARCHITECTURE AND TECHNOLOGIES	
Sustainability, Sustainable buidings and technologies	
SUSTAINABLE RETROFITTING OF EXISTING AND HISTORIC BUILDINGS	
Marina Traykova, Tanya Chardakova	477
OSMOTIC LANDSCAPES - RECOVERED IDENTITIES Venetia Tsakalidou, Anastasia Papadopoulou	485
DESIGN SCENARIOS FOR AN OFFICE BUILDING – ENERGY AND ENVIRONMENTAL ASPECTS	
Aleksandra Krstic-Furundzic, Tatjana Kosic	493
TECHNOLOGICAL AND ENVIRONMENTAL ASPECTS OF RAPID HOUSING CONSTRUCTION Nikola Macut, Bojana Stanković, Nataša Ćuković-Ignjatović	507
ENERGY ANALYSIS AND REFURBISHMENT STRATEGY FOR ZAGREB UNIVERSITY BUILDINGS: FORMER FACULTY OF TECHNOLOGY IN	507
ZAGREB BY ALFRED ALBINI Stanka Ostojić, Zoran Veršić, Iva Muraj	515

SUSTAINABLE REUSE OF OLD STRATEGIC INFRASTRUCTURE CANAL DANUBE-TISA-DANUBE Mirjana Jočić, Nataša Kuburović	523
PLACE ATTACHMENT AS POTENTIAL FOR SUSTAINABLE LOCAL DEVELOPMENT IN SERBIA Anđelka Mirkov	533
LOW ENERGY BUILDINGS: CONCEPT OF ENERGY PERFORMANCE OPTIMIZATION OF SINGLE-FAMILY HOUSES Katarina Slavković	540
TECHNOLOGY AND PRODUCTIVE PROCESS: MINING REJECTIONS FROM WASTE TO SUSTAINABLE RESOURCE Vincenzo Paolo Bagnato, Giovanna Mangialardi, Silvana Milella, Michele Mundo	549
ADAPTATION OF AN INDUSTRIAL BUILDING INTO HIGHER EDUCATION INSTITUTION IN ACCORDANCE WITH IMPROVED ENERGY PERFORMANCE Branko Slavković, Komnen Žižić, Danilo Dragović	557
FUNCTION OF A DESOLATE SPACE Aleksandra Pešterac, Daniela Dimitrovska	565
ENVIRONMENT CERTIFICATION OF REHABILITATION DESIGN PROJECTS: PUT AND SHU BUILDINGS AS CASE STUDY Florian Nepravishta, Gerta Veliu, Ramadan Alushaj	570
Green strategies and technologies	
GREEN URBAN STRATEGIES IN THESSALONIKI IN THE CONTEXT OF	
CRISIS Evangelia Athanassiou	580
GEOSCIENTIFIC EDUCATIVE CENTRE AS SUSTAINABLE COMMUNITIES BUILDING MODEL – POSITIVE COOPERATION EXAMPLE OF LIKA-SENJ COUNTY (CROATIA) AND UNA-SANA COUNTY (BIH)	
Ivan Brlić, Anita Bušljeta-Tonković, Katarina Milković	587
THE OCCUPANTS' PERSPECTIVE AS CATALYST FOR LESS ENERGY INTENSIVE BUILDINGS Lucia Martincigh, Marina Di Guida, Giovanni Perrucci	597
THE COLLECTIVE SELF ORGANIZED HOUSING EXPERIENCE IN	-
ITALY Silvia Brunoro, Giacomo Bizzarri	605

APPLICATION OF ROOF GARDENS IN THE DEFINING IMAGE OF THE CITY	
Mirjana Sekulić, Bojana Stanković, Ljiljana Dosenović	613
STRATEGY FOR NATIONAL DEFINITION OF NEARLY ZERO ENERGY BUILDINGS	
Milica Jovanović Popović, Bojana Stanković, Jasna Kavran	621
ENERGY OPTIMIZATION OF THE BUILDING ENVELOPE OF THE REPRESENTATIVE SAMPLE OF THE EXISTING RESIDENTIAL BUILDING IN BANJA LUKA	
Darija Gajić, Aleksandra Krstić – Furundžić	629
BLUE GREEN DREAM AND DAYLIGHT Srdjan Stankovic, Cedo Maksimovic, Milenko Stankovic	637
POSSIBILITIES FOR ENERGY REHABILITATION OF TYPICAL SINGLE FAMILY HOUSE IN BELGRADE – CASE STUDY	
Bojana Stanković, Dušan Ignjatović, Nataša Ćuković-Ignjatović	646
BLUE-GREEN INTEGRATED MODELING SOLUTIONS IN URBAN PLANNING AND ARCHITECTURAL DESIGN Miloš Mirosavić, Ivana Mirosavić, Srđan Stanković, Čedo Maksimović, Ranko Božović	654
POTENTIALS AND LIMITATIONS FOR ENERGY REFURBISHMENT OF MULTI-FAMILY RESIDENTIAL BUILDINGS BUILT IN BELGRADE BEFORE THE WORLD WAR ONE Ljiljana Đukanović, Ana Radivojević, Aleksandar Rajčić	661
FROM BUILDING INFORMATION MODELS TO SIMPLIFIED	
GEOMETRIES FOR ENERGY PERFORMANCE SIMULATION Daniel Ladenhauf, René Berndt, Eva Eggeling, Torsten Ullrich, Kurt Battisti,	
Markus Gratzl-Michlmair	669
ENERGY CITY GRAZ - REININGHAUS: FIRST RESULTS FROM AN ENERGY SELF-SUFFICIENT QUARTER Heimo Staller, Ernst Rainer, Carlos Varela Martín	677
	077
ENERGY EFFICIENCY AS ADVANCED TECHNOLOGY FOR A SOLUTION TO THE PROBLEM OF DEPOPULATION OF RURAL AREAS IN SERBIA	
Jovana Stanišić	684
THE ENERGY EFFICIENT CITY Ivan Dochev	692

Innovative materials, systems and technology	
INVESTIGATION OF FLY ASH INFLUENCE ON CEMENT MORTARS PROPERTIES Dragica Jevtić, Aleksandar Savić	701
INFLUENCE OF GLASS COMPONENT JOINTS ON THE STRUCTURAL GLASS FACADE DESIGN Aleksandra Krstic-Furundzic, Tatjana Kosic, Jefto Terzovic	709
QUANTIFYING THE THERMAL BRIDGING EFFECT WITH REGARD TO THE FAÇADE'S CONFIGURATION Katerina Tsikaloudaki, Theodore Theodosiou, Dimitris Aravantinos, Karolos Nicolaos Kontoleon, Dimitrios Bikas	720
THE INFLUENCE OF NEW TECHNOLOGIES ON MODERN CITY FACADES	
Jasna Čikić Tovarović, Jelena Ivanović Šekularac, Nenad Šekularac	728
DYNAMIC APPEARANCE OF URBAN AND ARCHITECTURAL SURFACES Tihana Hrastar, Tamara Marić, Bojana Bojanić	736
TOWARDS GENERATIVE CONVERGENCE IN DESIGN OF ARCHITECTURAL STRUCTURES	
Jelena Milošević, Zoran Šobić, Miodrag Nestorović	744
APPLICATION OF WOOD AS AN ELEMENT OF FACADE CLADDING IN CONTEMPORARY ARCHITECTURE OF BELGRADE Jelena Ivanović Šekularac, Jasna Čikić Tovarović, Nenad Šekularac	752
COMPARISON OF INSOLATION APPLIED ON SURFACES OF MODEL PLACED IN THE AREA OF SKOPJE	
Aleksandar Petrovski Todorka Samardzioska, Ana Trombeva Gavriloska	758
APPLICATION AND EFFECTS OF PHASE CHANGE MATERIALS IN A MODERN ARCHITECTURAL AESTHETICS	7//
Vladana Stanković, Goran Jovanović, Mirko Stanimirović	766
INTEGRATED DESIGN OF STRUCTURAL SYSTEMS Aleksandra Nenadović	772
NEW COMPOSITE SLAB SYSTEM – LIGHTWEIGHT CONCRETE, STEEL SHEETING AND REINFORCEMENT Zoran Šobić, Jelena Milošević, Miodrag Nestorović	780
MODERN METHODS OF STRENGTHENING MASONRY WALLS Nenad Šekularac, Jasna Čikić Tovarović, Jelena Ivanović Šekularac	788
NEW PERSPECTIVES FOR FERROCEMENT Ornela Lalaj, Yavuz Yardım, Salih Yılmaz	796

Cultural patterns, Architecture and technologies	
SPATIAL AND SOCIAL ASPECTS OF THE ARSENAL TRANSFORMATION, MILITARY PORT IN TIVAT INTO NAUTICAL – TOURISM SETTLEMENT AND PORT "PORTO MONTENEGRO" Goran Radović	805
DIGITAL FABRICATION IN THE FIELD OF ARCHITECTURE Roberto Vdović, Morana Pap	816
THE IMPACT OF SMART HOME TECHNOLOGIES ON ARCHITECTURAL DESIGN	822
Goran Petrović, Marko Aleksendrić BETWEEN THE PLACE AND NON-PLACE: ARCHITECTURE AND TERRITORY ON THE EXAMPLE OF SKOPJE Saša Tasić, Mitko Hadzi Pulja, Minas Bakalchev	830
INTEGRATED ARCHITECTURAL COMPLEXITY - FROM ABSTRACTION TO TECHNOLOGY AND MATERIALISATION Rada Čahtarević, Dženana Bijedić, Amra Taso	838
EVOLUTION DIGITIZED: ARCHITECTURE OF THE SUBLIME DREAM Mihailo Popović, Vladimir Milenković	846
MONOCHROMATIC IN THE ARCHITECTURAL COMPOSITION: WITH SPECIAL REFERENCE TO THE APPLICATION OF WHITE COLOUR Dragana Vasiljevic Tomic, Rifat Alihodzic, Dragana Mojsilovic	853
(RE)GENERATION & REFLECTIONS OF THE SCHOOL OF ARCHITECTURE – BANJALUKA IN THE CENTURY OF KNOWLEDGE AND SKILLS	
Milenko Stanković, Una Umićević	864
QUANTUM ARCHITECTURE, NON-PLACE AND ACCULTURATION Dubravko Aleksić	873
PLACES AND PRACTICES OF CONSUMPTION IN THE POST- SOCIALIST CONTEXT Dejana Nedučin, Dušan Ristić, Vladimir Kubet	880
INTERACTIONS BETWEEN LIGHT AND ARCHITECTURE: AN EXPERIMENT USING MODELS AND PHOTOGRAPHS Anita Stoilkov-Koneski	888
THE INTERPLAY OF MUSIC AND ARCHITECTURE: LAYERING OF SOUND AND SPACE	005
Anja Kostanjšak, Morana Pap	895
CULTURAL PATTERNS AND SENSITIVITY TODAY: FROM THE PHILOSOPHY TO THE TECHNOLOGY IN ARCHITECTURAL DESIGN PROCESS	

Małgorzata Kądziela, Anna Sachse-Rynkowska

PART III: PLACES, TECHNOLOGIES AND RELATED FIELDS

Big data, apps, social networks and microblogs in urban planning and design

PLACE COMPETITIVENESS EXPRESSED THROUGH DIGITAL DATA. MEASURING THE PLACE ATTRACTIVENESS TRACKING THE GEOTAG DATA VISUALS	
Milena Vukmirovic, Eva Vanista Lazarevic	914
ROOM BOOK 2.0 – BRING BACK THE INFORMATION TO ITS PLACE Christoph Breser, Stefan Zedlacher	926
THE INTERCONNECTED OBJECT: ARE YOU AT HOME IN A NETWORK? Kalina Ntampiza, Polina Zioga	936
THE INTERACTION TIME IN A NETWORKED SOCIETY Danijel Baturina	944
GOOGLE EARTH AS A MICROWORLD Milena Zindović	962
TRANSPARENCY OF SCALE: GEOGRAPHICAL INFORMATION PROGRAM (GOOGLE EARTH) AND THE VIEW FROM BEYOND Pavle Stamenović, Dunja Predić, Davor Ereš	970
Geodesy and modern cartography	
ROBUST ESTIMATION APPLIED TO GEODETIC DATUM TRANSFORMATION USING A METAHEURISTIC ALGORITHM Mevlut Yetkin	979
THE STATE OF THE ART SURVEYING BY TECHNOLOGY OF THE TERRESTRIAL LASER SCANNING Marko Pejić, Branko Božić, Verica Erić, Jelena Pandžić	987
ROLE OF CARTOGRAPHY IN MAKING A "SMART CITY": CASE STUDY OF INDJIJA Dragutin Protić, Ivan Vučetić, Ivan Nestorov	995
MODERN CARTOGRAPHY IN PROJECT OF CENSUS Maja Kalinić, Dragoljub Sekulović	1002

Mobility and technologies

PERSONAL RAPID TRANSIT – A SUSTAINABLE URBAN TRANSPORT SYSTEM	
Ljupko Šimunović, Luka Novačko, Mario Ćosić	1011
FLIGHTPATH TO AN ENVIRONMENTAL FRIENDLY AIR TRANSPORT Ivana Čavka, Olja Čokorilo, Slobodan Gvozdenović	1020
PRESERVATION OF PLACE-IDENTITY THROUGH URBAN TRANSFORMATIONS BASED ON SUSTAINABLE FORMS OF TRANSPORT Miloš Kopić	1029
BELGRADE RIVERSIDE TRAFIC INTERCHANGES Ksenija Stevanović, Milena Stevanović	1037
SUSTAINABLE URBAN MOBILITY PLANS IN EUROPE Davor Brčić, Ljupko Šimunović, Marko Slavulj	1045
URBAN DEVELOPMENT IN BELGRADE IN THE CONTEXT OF GLOBAL TRENDS: CHANCES OF ILLEGAL HOUSING INTEGRATION Biserka Mitrović, Miodrag Ralević, Branislav Antonić	1051
RE-THINKING INFRASTRUCTURE PROJECT FOR THE METROPOLIS: LABORATORY GRANADA Juan Luis Rivas Navarro, Belén Bravo Rodríguez	1059
Public participation, e-governing and tehcnology	
COMMUNITY PARTICIPATION AND GREEN INFRASTRUCTURES: A DELIBERATIVE EVALUATION METHOD Saverio Miccoli, Fabrizio Finucci, Rocco Murro	1067
RESULTS OF INTRODUCTION OF PARTICIPATORY TOOLS IN URBAN PLANNING IN SERBIA – 7 CASE STUDIES	1007
Ratka Čolić, Harald Mueller	1075
WAYS TOWARDS A CITY OF NEW TECHNOLOGIES Miodrag Ralevic, Tatjana Mrdjenovic, Natasa Krstic, Djemila Beganovic	1083
PARTICIPATION OF CITIZENS IN TOWN PLANNING PROCEDURES IN NEIGHBOURHOODS WITH FORMER REFUGEE AND DISPLACED POPULATION IN PRIJEDOR, BOSNIA AND HERZEGOVINA Rada Latinović	1090
THE ROLE OF INFORMATION AND COMMUNICATION TECHNOLOGY IN A VIRTUAL ORGANIZATION	
Jelena Lukić	1098

DESIGN SCENARIOS FOR AN OFFICE BUILDING - ENERGY AND ENVIRONMENTAL ASPECTS

Aleksandra Krstic-Furundzic

Faculty of Architecture, University of Belgrade, Bulevar kralja Aleksandra 73/II, akrstic@arh.bg.ac.rs

Tatjana Kosic

Faculty of Architecture, University of Belgrade, Bulevar kralja Aleksandra 73/II, tkosic@arh.bg.ac.rs

ABSTRACT

The main concern of this research is to estimate energy performances of different scenarios of the hypothetical model of the office building in downtown of Belgrade. Specific conditions of sites in downtown make limitations in building design and application of energy efficient systems, but also represent a provocation for architects. Methodological approach entails three steps: design of different models of the office building, numerical simulations of the models in PHPP'2007 software and comparison of the results. For each hypothetical model of the office building three scenarios are created: basic scenario and scenarios of different solutions of envelope design regarding shading devices types. The design of hypothetical models and various scenarios is carried out through the educational process on the Master studio design project. Results are considered and presented through the heat and cooling energy demands as well as reduction of energy consumption for cooling in summer period by implementation of different shading devices. CO_2 emissions are also discussed. Design methodology as well as results could generally be applicable for new office building design, both in Belgrade and in similar climatic conditions.

Keywords: Energy efficiency, CO₂ emissions, Office building design, Numerical simulations of energy efficiency, Heat and cooling energy demands.

INTRODUCTION

New energy-efficient buildings represent yearly a small percentage in relation to total building stock. In Belgrade, construction of office buildings is on the rise in last decade. Office buildings have one of the highest levels of energy consumption when compared with energy consumption in other buildings sectors (Burton, 2001). Specific conditions of sites in downtown make limitations in building design and application of energy efficient systems, but also represent a provocation for architects. In the paper the solutions for overcoming the problem are discussed. In addition to the aspect of energy performances of the office building, architectural aspect is also taken into consideration. According to these aspects,

different design solutions are discussed and the most appropriate solutions regarding all aspects are selected. In order to design energy efficient houses, students of architecture, as well as architects, have to be informed about systems, materials, supporting systems, coatings and design principles. In that sense, different scenarios of the energy efficient office building design are discussed in the paper and accompanied with examples of student works.

METHODOLOGY

The main concern of this research is to estimate different scenarios of energy performances of the hypothetical model of office building in downtown of Belgrade. Methodological approach entails three steps:

- design of different models of the office building,
- numerical simulations of the models in PHPP'2007 software and
- comparison of the results (models).

The design of hypothetical models and various scenarios is carried out through the educational process on the Master studio design project M5, entitled Design of energy-efficient office building in the urban milieu of Belgrade (authors of the paper conducted design process with students). Program is designed to contribute to the development of competent professionals and the dissemination of ideas of energy efficiency in practice.

Characteristics of the building location

Different hypothetical models of the office building are created according to Belgrade climatic conditions and site orientation. Energy efficiency of models is estimated through numerical simulations.

Climatic conditions of the location. Generally, climatic conditions strongly influence building design. Students' task was to design an office building in specific climatic conditions of Belgrade, characterised by extreme summer and winter differences. Belgrade is located at latitude 44°49'14"N. Data about Belgrade climate, relevant for numerical simulations, are taken from the Report prepared by Republic Hydrometeorological Service of Serbia. Belgrade has a moderate continental climate, with four seasons. Autumn is with longer sunny and warm periods than spring. Winter is not so severe, with an average of 21 days with temperature below zero. January is the coldest month, with average temperature of 0.1°C. Spring is rainy. Summer arrives abruptly. The average annual air temperature is 11.7°C. The hottest month is July (22.1°C). The average annual number of days with temperature higher than 30°C is 31 and that of summer days with temperature higher than 25°C is 95. Belgrade is the city with global irradiance of 1.341.8kWh/m² (Polysun 4), and 2,123.25 sunny hours per year. Solar radiation for different facade orientations is shown in the Figure 1. The highest insolation of about 10 hours a day is in July and August, while December and January are the cloudiest, with insolation of 2 to 2.3 hours per day. Figure 2 shows mean annual temperature for GMS Belgrade, through its deviation from the normal. The black line is the 5-year sliding mean and blue pillars are the deviation from the normal for each year. Increase of temperature is evident (Krstic-Furundzic and Djukic, 2009; Republic Hydrometeorological Service of Serbia).

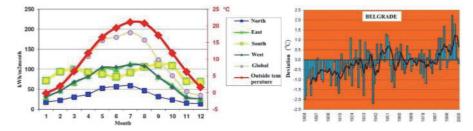


Figure 1. Solar radiation for different facade annual orientations in Belgrade climatic conditions period 1888-2005 and Figure 2. Deviation of mean temperature in the

The characteristic of Belgrade climate is also Kosava - the southeast wind, which brings clear and dry weather. The average speed of Kosava is 25-43 km/h but certain strokes can reach up to 130 km/h. The average annual rainfall on Belgrade and its surroundings is 669.5 mm. The rainiest months are May and June. The average number of snowy days is 27. Mean atmospheric pressure in Belgrade is 1,001 millibars and mean relative humidity is 69.5%.

Building location. The building site is located in a high density urban structure surrounded by buildings that are under protection as cultural property of great importance (Figure 3 and 4). The hypothetical multi-storey office building has to be integrated into the front of the existing buildings.

Figure 3. Site location on the city map and Figure 4. Location of the building in the closed block

The building is situated along the NE-SW direction (Figure 4). Building insolation for different seasons and periods of the day is presented in the Table 1.

Street facade is the south-west orientation, yard northeast, while the gables of the building, adjacent to its neighbours, are northwest and southeast. Gable oriented towards the south rises above the neighbour's roof giving the potential for solar energy usage. The building is relatively well-protected from dominant wind by its position and neighbouring buildings.

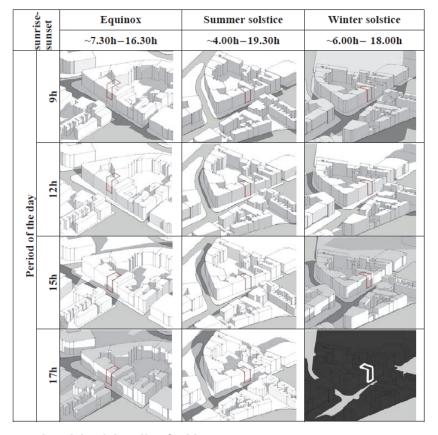


Table 1. Building insolation for different seasons and periods of the day

Design of models of the office building

The work highlights the problems of energy efficient office building design. Consideration of energy efficiency of office buildings is still not in practice in Belgrade, as well as in Serbia. The purpose of this research is to estimate different design solutions of office building in terms of energy efficiency in specific climatic conditions. In this paper, the authors evaluate a few hypothetical models of the office building created by students. Students solved the task through three causal steps: an analytical phase, the phase of development of the concepts-models of the building, and checking of achieved results as the final phase. For each hypothetical model three scenarios are created: basic scenario and scenarios of different solutions of envelope design regarding shading devices types. The results of the preliminary energy balance of the building show: energy consumption for heating and cooling, share of passive solar energy and CO₂ emissions. Based on the results, the comparative analysis of different models is carried out. This approach, as well as results, could generally be applicable for new office building design, both in Belgrade and in similar climatic conditions. Diversity of facade types was the criteria for students' projects (models) selection. Most commonly used types of facades in the design of office buildings in local practice were adopted in order to assess their energy performances, point out the disadvantages and form recommendations. Three facade concepts were selected: massive (traditional) facade – Model1 (M1) and two different types of glass facades - Models 2 and 3 (M2 and M3).

Characteristics of hypothetical models. The location caused narrow facade fronts (Figure 5). For this reason the inner atrium is formed for the purpose of natural lighting and ventilation of space. According to urban planning regulations the building of six floors is planned. The reinforced concrete skeleton structure is adopted for all models. Both office layout concepts, open-plan and classical type, are accepted. Design concepts of three selected models are shown by plan of a typical floor, elevation and cross-section of the street facade (Figures 6, 7 and 8).

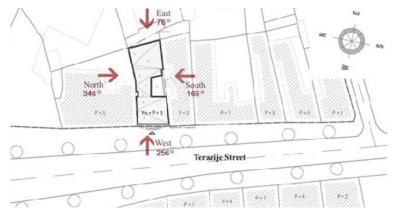
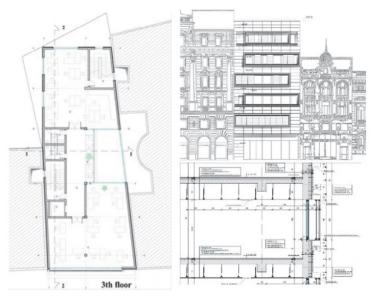



Figure 5. Location of the building in the closed block

Office building is designed for 100 users. Appropriate inside thermal comfort includes indoor air temperature of 20°C in winter and 22°C in summer (a temperature of 25°C is maximum which does not require additional mechanical cooling). Internal and solar gains are taken into account in the calculation of energy demands for heating and cooling. District heating is predicted for this location. Ventilation system with heat recovery of 88.0% efficiency is specified. The fresh-air demand results from the requirements of the DIN 1946 Part 6 and presents 30m³/h per person. The air change rate is related to available space area per user. The average air change rate per hour for the M1 and M2 is 0.41 while for the M3 is 0.49. In summer period the natural ventilation is predicted. Night-time and daytime window ventilation types are accepted. Cross-ventilation through east-west windows (daily average air change rate-0.36/h), as well as facade and atrium windows-"chimney effect" (daily average air change rate-0.62/h) is proposed. Night ventilation includes average air change rate of 0.29/h. The daily temperature fluctuation caused by the solar gains during the design day is taken into consideration and should not exceed 3°K, otherwise the calculated cooling load might not be enough; if the frequency of temperatures above the comfort limit (25°C) exceeds 10% of the year, additional measures for protection from summer heat are

necessary (Feist, 2007). Electricity consumption for lighting, appliances and water heating is not considered.

Figure 6. Plan of a typical floor, elevation and cross-section of the street facade of Model 1

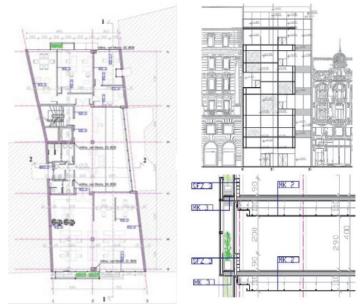


Figure 7. Plan of a typical floor, elevation and cross-section of the street facade of Model 2

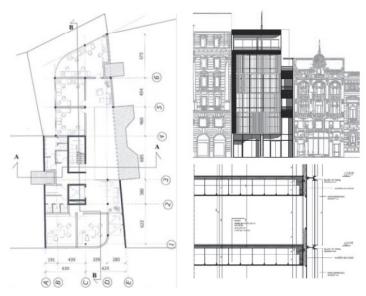


Figure 8. Plan of a typical floor, elevation and cross-section of the street facade of Model 3

As the energy requirements for heating and cooling are discussed in the paper, data relevant for calculation of these demands for different models are shown in the Table 2.

				F	'acad irfac	le es	E	nvelo types	ppe n and	nassi U-v	ve st alues	r.	Gla U-va	zing	G	lazi	ing	area	IS
Model	Heated space area		Office space height	Glazed	Massive	Total	1	2	3	4	5	6	glazing	frame	North	East	South	West	Horizontal
	m^2	m ³	m		m^2				W/1	n ² K			W/1	n ² K			m^2		
MI	1963.0	5889.0	3.0	492.89	2194.67	2687.16	:	0.32	0.35	0.35	0.31	0.33	2.8	0.75	66.74 (51.8)	54.36 (43.1)	204.11 (193.5)	154.63 (136.6)	13.05 (11.3)
M2	1898.1	5694.3	3.0	909.71	1861.9	2771.6	0.31	1.93	0.28	0.54	0.28	1.67	2.70	0.83	11.20 (5.6)	300.64 (287.3)	267.81 (255.6)	306.78 (293.2)	23.28 (21.7)
M3	1560.0	4680.0	3.0	840.39	1898.91	2739.30	0.30	1.93	0.32	0.32	0.32	1.61	0.70	0.80	138.28 (115.8)	108.41 (90.2)	263.30 (239.1)	292.67 (265.9)	37.74 (33.7)

 Table 2. Models data relevant for calculation of heat and cooling demands (1-basement ceiling;

 2-basement external wall; 3-facade wall; 4-gable wall; 5-roof; 6-ground slab)

Following differences are characteristics of proposed models envelope structures that influence the energy performances of each model:

- as the M1 has heated basement, thermal insulation is placed on the ground slab and basement walls, while in case of M2 and M3 it is not heated and thermal insulation is placed on basement ceiling;
- for the M1 the street and courtyard facades are massive walls with thermal
 insulating panels and glazing and stone slabs as finishing layer (Figure 6), for
 the M2 glass protection layer at distance of 86cm is suspended in front of the
 glass facade made of thermal insulating panels (Figure 7), and in the case of the
 M3 the street glass facade is made of triple low-e glazed panels with gas fills of
 krypton while the courtyard facade is a massive structure (Figure 8);
- flat roofs are applied for all models; in addition the M2 has a green roof with planting layer in order the reduction of the surface temperature to be obtained.

Contribution of heat gains in compensation of the total heat losses in the winter period is significant and represents 39% (passive solar gains 17%+internal gains 22%) in case of the M1, 52% (39%+13%) in case of the M2 and 73% (55%+18%) in case of the M3.

Type of shading	Orientation	Glazing orientation and summer shading factors						
		M	[1 [%]	M	[2 [%]	M	[3 [%]	
	North	M ₁₀	58		41	M30	54	
No shading device	East		47		45		63	
(M10, M20, M30)	South		22	1	58		57	
	West		42	M20	63		60	
	Horizontal		97	Z	97		97	
Internal shading	North	M ₁₁	35		41	M ₃₁	32	
device (temporary	East		28	M21	27		38	
shading reduction	South		13		35		34	
factor 60%)	West		25		38		41	
(M11, M21, M31)	Horizontal	Σ	50	Σ	58		58	
External shading	North		6		41		5	
device (temporary	East	1	5	1	4		6	
shading reduction	South	1	2	1	6		6	
factor 10%)	West	M ₁₂	4	M22	6	M32	7	
(M12, M22, M32)	Horizontal	2	10	 ≧	10	7 ≥	10	

Table 3. Glazing orientation and shading factors

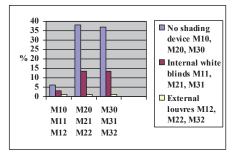


Figure 9. Frequency of overheating

⁵⁰⁰

Energy demands for cooling purposes are calculated for each model in three variants: no shading devices (M10, M20, M30), internal movable white blind - temporary shading reduction factor 60% (M11, M21, M31) and external movable louvers inclined 45°- temporary shading reduction factor 10% (M12, M22, M32) as shading devices. Shading factors for listed variants are given in the Table 3. Frequency of overheating in relation to different types of shading devices is presented in the Figure 9. Clear glass is selected for window glazing in order appropriate daylighting to be obtained.

RESULTS

As a national software package is not yet adopted, numerical simulations were performed in *PHPP'2007* software to evaluate the heat and cooling energy demands and reduction of energy consumption for cooling in summer period by implementation of shading devices. Additionally, monthly heat and cooling demands are calculated and graphically illustrated using monthly method based on EN 13790 (Figures 10, 11, 12). Comparative analysis of energy performances of design variants is carried out and annual final energy demands for heating and cooling per m² (Figures 13 and 14), as well as primary energy demands for heating and cooling per m² (Figures 15 and 16) are presented for all models.

Analysis of CO_2 emissions is conducted according to the Regulations on Energy Efficiency of Buildings with assumption that district heating is predicted which includes the use of fuel oil (specific emission is 0,265 kgCO₂/kWh) for water heating, while for cooling the use of electricity (specific emission is 0,53 kgCO₂/kWh for Serbia) is proposed. Emissions are shown in the Table 4.

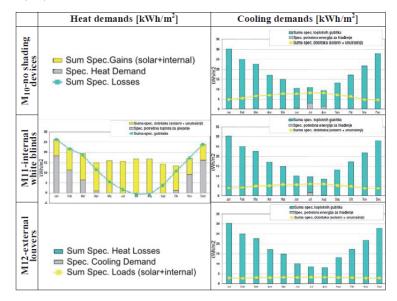


Figure 10. Specific annual heat and useful cooling demands for Model 1 - monthly method

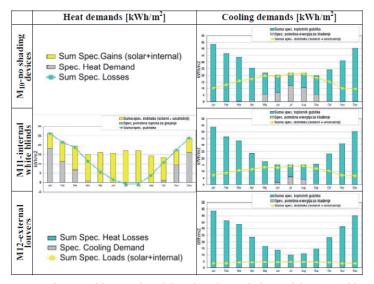


Figure 11. Specific annual heat and useful cooling demands for Model 2 - monthly method

Figure 12. Specific annual heat and useful cooling demands for Model 3 - monthly method

The analysis shows that transmission losses for the M2 (121.5kWh/m²a) are almost twice higher than for of M1 (71.7kWh/m²a), i.e. M3 (63.7kWh/m²a), due to the type of the facades. This is the consequence of the facts that the glass facade of M2, made of thermal insulating panels, has lower thermal performances than glass facade of M3, made of triple low-e glazed panels with gas fills of krypton, and that the glazing area in case of the M1 is less than twice the glazing areas of M2 and M3, resulting in less thermal losses. As can be noted, a glass facade provides more than twice the solar gains (Figures 11 and 12) than a traditional façade (Figures 10).

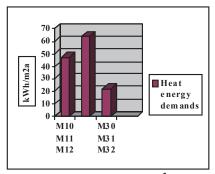


Figure 13. Annual final energy demands for heating [kWh/m²a]

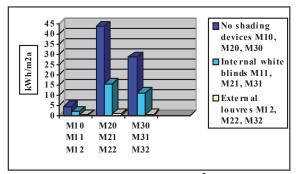


Figure 14. Annual final energy demands for cooling [kWh/m²a]

At the yearly basis, it is evident that design models M1 and M2 (Figure 13) do not exceed the maximum value of annual energy consumption for heating for new office buildings of 55kWh/m²a (according to the Regulations on energy efficiency of buildings).

By using the conversion factor of 1.2 for fuel oil as a heat source for space heating and 2.5 for electricity as a heat source for space cooling, the annual primary energy demands for heating and cooling are calculated.

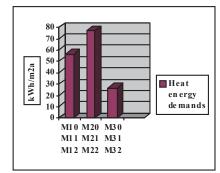


Figure 15. Annual primary energy demands for heating [kWh/m²a]

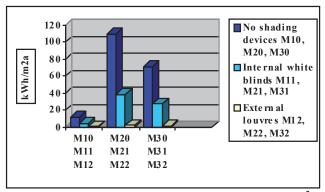


Figure 16. Annual primary energy demands for cooling [kWh/m²a]

It is noticeable that the presence of a higher percentage of internal gains is in the case of the massive facade. Despite significant differences in the facade concepts, primary energy demands for heating are similar for the M1 (56.4kWh/m²a) and M2 (76.8kWh/m²a) as the solar gains are smaller in case of the M1 while transmission losses are higher in the case of the M2. The minimum primary energy for heating is required for M3 (26.4kWh/m²a) due to glazing type and significant solar gains resulting in the lowest CO₂ emissions for heating compared to M1 and M2 (Table 4 and Figure 17).

The lowest frequency of overheating is in the case of traditional facade-6% and consequently the lowest primary energy demands for cooling-12kWh/m²a. In the case of glass facades frequency of overheating (almost 38%) and the primary energy demands for cooling (109kWh/m²a for M2, i.e. 71.5kWh/m²a for M3) are much higher and therefore CO₂ emissions (Table 4 and Figure 18). For all models significant reduction of frequency of overheating is achieved by internal white blinds and thus the reduction of cooling energy demands and CO₂ emissions, but still advantage of the massive facade is evident. By external movable louvers, cooling demands are reduced to the same level (about 1kWh/m²a) for all models.

Model		Annual primary energy demands for heating (kWh)	CO ₂ emissions (kg/year for heating)	Annual primary energy demands for cooling (kWh)	CO ₂ emissions (kg/year for cooling)
MI	M10	112,645	29,850.98	23,445	12,425.85
	M11			10,438	5,532.14
	M12			2,995	1,587.35
M2	M20	146,071	38,708.86	207,070	109,747.10
	M21			74,725	39,604.25
	M22			4,605	2,440.65
M3	M30	36,418	9,650.66	111,618	59,157.54
	M31			38,402	20,353.06
	M32			2,568	1,361.04

Table 4. Annual primary energy demands for heating and cooling and CO₂ emissions

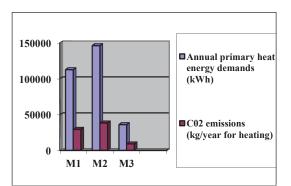


Figure 17. Annual primary energy demands for heating and CO₂ emissions

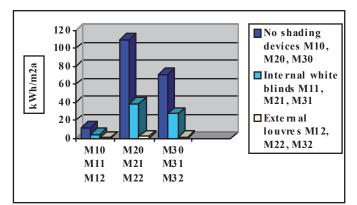


Figure 18. Annual primary energy demands for cooling and CO₂ emissions

Due to the significantly greater conversion factor in case of electric energy than fuel oil, annual primary energy demands for cooling (in case of glass facade with no shading device) are almost doubled in case of M2 and tripled in case of M3 in comparison to the annual primary energy demands for heating (Figures 17 and 18). Consequently significantly higher CO_2 emissions for the cooling than for heating are noticed.

CONCLUSION

The focus on energy efficiency and a high-quality indoor environment was the primary objective of students' office building design in Belgrade climate. According to analyses presented in the paper following conclusions can be made:

- From the aspect of energy efficiency, office buildings with properly insulated massive (traditional) facades are suitable for Belgrade climatic conditions contributing to low heat and cooling demands and thus CO₂ emissions.
- Glass facades which are most commonly used in office building design have to be with triple low-e glazing (particularly with gas fills of argon or krypton) and external movable shading devices contributing to energy efficiency

(reduction of transmission losses, frequency of overheating, heat and cooling demands and CO_2 emissions). According to the Regulations on terms, content and method of issuing certificates of energy performance of buildings, in relation to specific annual heating energy consumption for office building, model M3 is classified as energy class B and may be considered as the most energy efficient.

 Contribution of heat gains in reduction of the heat demands in the winter period is significant. By night ventilation (night cooling) heat can be dissipated resulting in reduction of cooling demands in the summer period.

Research methodology as well as obtained results, presented in the paper, could generally be applicable for new office building design, both in Belgrade and in similar climatic conditions.

ACKNOWLEDGEMENT

Numerical simulations of energy consumption for different Models were conducted with the assistance of Mr. Filip Kanacki, M.Arch.

This research is part of the scientific research project "Physical, environmental, energy, and social aspects of housing development and climate change – mutual influences"(TP36035), financed by Ministry of Science and Technological Development of the Republic of Serbia.

REFERENCES

Burton, Simon. 2001. Energy efficient office refurbishment. London: James & James.

Feist, Wolfgang. 2007. Passive house planning package. Passivhaus Institut. Darmstadt.

Krstic-Furundzic, Aleksandra and Aleksandra Djukic. 2009. "Serbia." In *European carbon atlas*, edited by Phil Jones, Paulo Pinho, Jo Patterson and Chris Tweed, 156-170. Cardiff: Welsh School of Architecture, Cardiff University.

Regulations on energy efficiency of buildings, *Official Gazette RS*, no. 72/09, 81/09 – revise, 64/10 and 24/11: 58–59.

Regulations on terms, content and method of issuing certificates of energy performance of buildings, *Official Gazette RS*, no. 61/11: 7–8.

Republic Hydrometeorological Service of Serbia, Basic climate characteristics for the territory of Serbia, Accessed October 25, 2012. http://www.hidmet.gov.rs/.